
Boosting Trevor Hastie, Stanford University 1

Trees, Bagging, Random Forests and Boosting

• Classification Trees

• Bagging: Averaging Trees

• Random Forests: Cleverer Averaging of Trees

• Boosting: Cleverest Averaging of Trees

Methods for improving the performance of weak learners such as
Trees. Classification trees are adaptive and robust, but do not
generalize well. The techniques discussed here enhance their
performance considerably.

Boosting Trevor Hastie, Stanford University 2

Two-class Classification

• Observations are classified into two or more classes, coded by a
response variable Y taking values 1, 2, . . . , K.

• We have a feature vector X = (X1, X2, . . . , Xp), and we hope
to build a classification rule C(X) to assign a class label to an
individual with feature X.

• We have a sample of pairs (yi, xi), i = 1, . . . , N . Note that
each of the xi are vectors xi = (xi1, xi2, . . . , xip).

• Example: Y indicates whether an email is spam or not. X

represents the relative frequency of a subset of specially chosen
words in the email message.

• The technology described here estimates C(X) directly, or via
the probability function P (C = k|X).

Boosting Trevor Hastie, Stanford University 3

Classification Trees

• Represented by a series of binary splits.

• Each internal node represents a value query on one of the
variables — e.g. “Is X3 > 0.4”. If the answer is “Yes”, go right,
else go left.

• The terminal nodes are the decision nodes. Typically each
terminal node is dominated by one of the classes.

• The tree is grown using training data, by recursive splitting.

• The tree is often pruned to an optimal size, evaluated by
cross-validation.

• New observations are classified by passing their X down to a
terminal node of the tree, and then using majority vote.

Boosting Trevor Hastie, Stanford University 4

x.2<0.39
x.2>0.39

10/30

0

x.3<-1.575
x.3>-1.575

 3/21

0

 2/5

1

 0/16

0

 2/9

1

Classification Tree

Boosting Trevor Hastie, Stanford University 5

Properties of Trees

✔ Can handle huge datasets

✔ Can handle mixed predictors—quantitative and qualitative

✔ Easily ignore redundant variables

✔ Handle missing data elegantly

✔ Small trees are easy to interpret

✖ large trees are hard to interpret

✖ Often prediction performance is poor

Boosting Trevor Hastie, Stanford University 6

Example: Predicting e-mail spam

• data from 4601 email messages

• goal: predict whether an email message is spam (junk email) or
good.

• input features: relative frequencies in a message of 57 of the
most commonly occurring words and punctuation marks in all
the training the email messages.

• for this problem not all errors are equal; we want to avoid
filtering out good email, while letting spam get through is not
desirable but less serious in its consequences.

• we coded spam as 1 and email as 0.

• A system like this would be trained for each user separately
(e.g. their word lists would be different)

Boosting Trevor Hastie, Stanford University 7

Predictors

• 48 quantitative predictors—the percentage of words in the
email that match a given word. Examples include business,
address, internet, free, and george. The idea was that these
could be customized for individual users.

• 6 quantitative predictors—the percentage of characters in the
email that match a given character. The characters are ch;,
ch(, ch[, ch!, ch$, and ch#.

• The average length of uninterrupted sequences of capital
letters: CAPAVE.

• The length of the longest uninterrupted sequence of capital
letters: CAPMAX.

• The sum of the length of uninterrupted sequences of capital
letters: CAPTOT.

Boosting Trevor Hastie, Stanford University 8

Details

• A test set of size 1536 was randomly chosen, leaving 3065
observations in the training set.

• A full tree was grown on the training set, with splitting
continuing until a minimum bucket size of 5 was reached.

• This bushy tree was pruned back using cost-complexity
pruning, and the tree size was chosen by 10-fold
cross-validation.

• We then compute the test error and ROC curve on the test
data.

Boosting Trevor Hastie, Stanford University 9

Some important features

39% of the training data were spam.

Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the
words and characters showing the largest difference between spam

and email.

george you your hp free hpl

spam 0.00 2.26 1.38 0.02 0.52 0.01

email 1.27 1.27 0.44 0.90 0.07 0.43

! our re edu remove

spam 0.51 0.51 0.13 0.01 0.28

email 0.11 0.18 0.42 0.29 0.01

Boosting Trevor Hastie, Stanford University 10

600/1536

280/1177

180/1065

 80/861

 80/652

 77/423

 20/238

 19/236 1/2

 57/185

 48/113

 37/101 1/12

 9/72

 3/229

 0/209

100/204

 36/123

 16/94

 14/89 3/5

 9/29

 16/81

 9/112

 6/109 0/3

 48/359

 26/337

 19/110

 18/109 0/1

 7/227

 0/22

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

ch$<0.0555

remove<0.06

ch!<0.191

george<0.005

hp<0.03

CAPMAX<10.5

receive<0.125edu<0.045

our<1.2

CAPAVE<2.7505

free<0.065

business<0.145

george<0.15

hp<0.405

CAPAVE<2.907

1999<0.58

ch$>0.0555

remove>0.06

ch!>0.191

george>0.005

hp>0.03

CAPMAX>10.5

receive>0.125edu>0.045

our>1.2

CAPAVE>2.7505

free>0.065

business>0.145

george>0.15

hp>0.405

CAPAVE>2.907

1999>0.58

Boosting Trevor Hastie, Stanford University 11

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Specificity

S
en

si
tiv

ity

ROC curve for pruned tree on SPAM data

o TREE − Error: 8.7%

SPAM Data

Overall error rate on test data:
8.7%.
ROC curve obtained by vary-
ing the threshold c0 of the clas-
sifier:
C(X) = +1 if P̂ (+1|X) > c0.
Sensitivity: proportion of true
spam identified
Specificity: proportion of true
email identified.

We may want specificity to be high, and suffer some spam:
Specificity : 95% =⇒ Sensitivity : 79%

Boosting Trevor Hastie, Stanford University 12

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Specificity

S
en

si
tiv

ity

ROC curve for TREE vs SVM on SPAM data

o
o

SVM − Error: 6.7%
TREE − Error: 8.7%

TREE vs SVM

Comparing ROC curves on
the test data is a good
way to compare classi-
fiers. SVM dominates
TREE here.

Boosting Trevor Hastie, Stanford University 13

Toy Classification Problem

-6 -4 -2 0 2 4 6

-6
-4

-2
0

2
4

6

Bayes Error Rate: 0.25

0

00

0

00

0

0

0
0

0

0

0

0

0

0

0

0

0 0 0

0
0

0

0
0

00

0
0

0

0

0
0

0
0

00

0 0

0

0

0
0

0

0

0 0

0
0

0

0

0

00
0

0

0 0

0
0

0
0

0
0 00 0000

0

0

0

0

0

0

0

0
0

0
0

0

0

0
0

00

0

0

0

00
0

0
0

0
0

0

00
0 00

0

0

0

0

0

0
0

0
0

0

0
0

0

00

0
0

0

0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

00

0

0

0 00

0

0 00

0
0

0
0

0

0

0

0

0 0

0

0

0
0
0

0

0

0

0

00

0

0

00
0

0

0
0

0

0

0

0 00

0

0
0 00 0

0 0

0
00

0
0

0

00
00 0

0

0

0

0

0
0 0

00
0

0

0

0

0

00

0

0
0

0

0

0

0

0

0

0

0 00

0

0
0

0
0

0

0

0

0 0

00

0
0

0 0

0

0

0

0
0

0

0
0

0

0

00
0

0

0

0

0
0

0

00 0
0

0

0
0

0

0

0

0

0

0

0

0
0

0

0

0

0

0
0

000

0

0

0
0

0
0

0

00

0

0

0 0

0

0

0

0

0

0

0
0

0

0

0

0

0

00

0
0

0

0

0
0

0
0 0

0

0

0

0 0

0

0

0
0

000

0

0 0

0
0

0
0

0 0

0 0

0

0

0

0

0
0

0

0

0

0

000

0

0
0

0 0

0

0

00

0
0

0 0

0

0

0

0

0

0

0

0

0

0 0
0

0
0

0

0
0

0 0

0
0

00

1

1

1

11

1

1

1

1
1

1

1
11

1

1

1
1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1
1

1

1 1
1

1

1

1

1

1

1

1

1

1

1

1

1
1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1
1

1

11

1

1

11

1

1

1
1

1
1

11

1

1
1

11

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

11
1

1

1

1

1
1

11

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1
1

1

1

1

1

1

1

1
1

1
11

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1 1

1

1

1
1

1

1

1

1

1 1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

X
2

X1

• Data X and Y , with Y

taking values +1 or −1.

• Here X = (X1, X2)

• The black boundary
is the Bayes Decision
Boundary - the best
one can do.

• Goal: Given N train-
ing pairs (Xi, Yi)
produce a classifier
Ĉ(X) ∈ {−1, 1}

• Also estimate the probability of the class labels P (Y = +1|X).

Boosting Trevor Hastie, Stanford University 14

Toy Example - No Noise

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

0

0

0
0

0 0

0

0 0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

00
0

0

0

0

0

0

0

0

0

0

00

00 0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0
0

00

0

0

0

0

0

0

0
0

0

0

0

0

0
0

0

0

0
00

0

0

0
0

0

0

0

0 0

00

0

0 00

0

0

0

0
0

0
0 0

0

0

0
0

0

0

0

0

0

0
0

0

00

00 0

0

00
0

0

0

0

00

0 0
0

0

0

0

0

0

0

0

0

0

0
0

0

0 0

0

0

0

0
0

0

0
0

0
0

0

0

0
0

0

0

0

0

00

0 0

0

0
0

0

0

0

0 0

0

0

0

0

00

0

0
00

00
0

0

0
0 0

0

0

0

0 0
0

0

0

0

0
0

00

0

0

0

0

0

0
0

0

0
0

0

0
0

0

0

0
0

00

0

0 0

0

0

0

0

0

0

0
0

0

0
0

0
0

0
0

0

0

0
0

0

00

0

0

0
0

0

0
0

0 0

0

0

0

0

0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0
0

0

0 00

0
0

0

0

0

0

0

00

00

0

0

0
0

0

0
0

0
0

0

0

0
0

0
0

0

0
00 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0
0

0

0

0
0

0
0 00

0
0

0
0

0
0

0

0

0

0

0

0

0

0 0

0

0

0

0

0
0

0

0
0

0

0
00

00

0
0

0

0

0

1

1

1

1

1

1

11

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1
1

1

1 1

1

1

1

1

1

1

1

11

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1 1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1
1

1 1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1 1

1

11

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1 1
1

1

1

1
1

1
1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1 11 1

1

1

1

1

1

1

1

11

1

1

1

1

1
1

1
1

1

1

11

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

Bayes Error Rate: 0

X
2

X1

• Deterministic problem;
noise comes from sam-
pling distribution of X.

• Use a training sample
of size 200.

• Here Bayes Error is
0%.

Boosting Trevor Hastie, Stanford University 15

Classification Tree

x.2<-1.06711
x.2>-1.06711

94/200

1

 0/34

1

x.2<1.14988
x.2>1.14988

72/166

0

x.1<1.13632
x.1>1.13632

40/134

0

x.1<-0.900735
x.1>-0.900735

23/117

0

x.1<-1.1668
x.1>-1.1668

 5/26

1

 0/12

1

x.1<-1.07831
x.1>-1.07831

 5/14

1

 1/5

1

 4/9

1

x.2<-0.823968
x.2>-0.823968

 2/91

0

 2/8

0

 0/83

0

 0/17

1

 0/32

1

Boosting Trevor Hastie, Stanford University 16

Decision Boundary: Tree

X1

X
2

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

1

1

1
1

1

1
1

1

1

1

1
1

1

1

1

1

11

1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

11
1

1

1

1 1

1

1

1

1

11 1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

11

1

1

1

1

1

1

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

00
0

0

0
0

0
0

0

0

0

0
0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0
0

0

0

0

0

00

0 0

0

0

0

0

0 0

00

0

0

0

0

0

0

0
0

0

0
0

0

0

0 0

0

0

0

00

0

0

0

0
0

0

Error Rate: 0.073

When the nested spheres
are in 10-dimensions, Clas-
sification Trees produces a
rather noisy and inaccurate
rule Ĉ(X), with error rates
around 30%.

Boosting Trevor Hastie, Stanford University 17

Model Averaging

Classification trees can be simple, but often produce noisy (bushy)
or weak (stunted) classifiers.

• Bagging (Breiman, 1996): Fit many large trees to
bootstrap-resampled versions of the training data, and classify
by majority vote.

• Boosting (Freund & Shapire, 1996): Fit many large or small
trees to reweighted versions of the training data. Classify by
weighted majority vote.

• Random Forests (Breiman 1999): Fancier version of bagging.

In general Boosting � Random Forests � Bagging � Single Tree.

Boosting Trevor Hastie, Stanford University 18

Bagging

Bagging or bootstrap aggregation averages a given procedure over
many samples, to reduce its variance — a poor man’s Bayes. See

pp 246.

Suppose C(S, x) is a classifier, such as a tree, based on our training
data S, producing a predicted class label at input point x.

To bag C, we draw bootstrap samples S∗1, . . .S∗B each of size N

with replacement from the training data. Then

Ĉbag(x) = Majority Vote {C(S∗b, x)}B
b=1.

Bagging can dramatically reduce the variance of unstable
procedures (like trees), leading to improved prediction. However
any simple structure in C (e.g a tree) is lost.

Boosting Trevor Hastie, Stanford University 19

x.2<0.39
x.2>0.39

10/30

0

x.3<-1.575
x.3>-1.575

 3/21

0

 2/5

1

 0/16

0

 2/9

1

Original Tree

x.2<0.36
x.2>0.36

7/30

0

x.1<-0.965
x.1>-0.965

1/23

0

1/5

0

0/18

0

1/7

1

Bootstrap Tree 1

x.2<0.39
x.2>0.39

11/30

0

x.3<-1.575
x.3>-1.575

 3/22

0

 2/5

1

 0/17

0

 0/8

1

Bootstrap Tree 2

x.4<0.395
x.4>0.395

4/30

0

x.3<-1.575
x.3>-1.575

2/25

0

2/5

0

0/20

0

2/5

0

Bootstrap Tree 3

x.2<0.255
x.2>0.255

13/30

0

x.3<-1.385
x.3>-1.385

 2/16

0

 2/5

0

 0/11

0

 3/14

1

Bootstrap Tree 4

x.2<0.38
x.2>0.38

12/30

0

x.3<-1.61
x.3>-1.61

 4/20

0

 2/6

1

 0/14

0

 2/10

1

Bootstrap Tree 5

Boosting Trevor Hastie, Stanford University 20

Decision Boundary: Bagging

X1

X
2

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

1

1

1
1

1

1
1

1

1

1

1
1

1

1

1

1

11

1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

11
1

1

1

1 1

1

1

1

1

11 1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

11

1

1

1

1

1

1

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

00
0

0

0
0

0
0

0

0

0

0
0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0
0

0

0

0

0

00

0 0

0

0

0

0

0 0

00

0

0

0

0

0

0

0
0

0

0
0

0

0

0 0

0

0

0

00

0

0

0

0
0

0

Error Rate: 0.032

Bagging averages many
trees, and produces
smoother decision bound-
aries.

Boosting Trevor Hastie, Stanford University 21

Random forests

• refinement of bagged trees; quite popular

• at each tree split, a random sample of m features is drawn, and
only those m features are considered for splitting. Typically
m =

√
p or log2 p, where p is the number of features

• For each tree grown on a bootstrap sample, the error rate for
observations left out of the bootstrap sample is monitored.
This is called the “out-of-bag” error rate.

• random forests tries to improve on bagging by “de-correlating”
the trees. Each tree has the same expectation.

Boosting Trevor Hastie, Stanford University 22

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Specificity

S
en

si
tiv

ity

ROC curve for TREE, SVM and Random Forest on SPAM data

o
o
o

Random Forest − Error: 5.0%
SVM − Error: 6.7%
TREE − Error: 8.7%

TREE, SVM and RF

Random Forest dominates
both other methods on the
SPAM data — 5.0% error.
Used 500 trees with default
settings for random Forest

package in R.

Boosting Trevor Hastie, Stanford University 23

Training Sample

Weighted Sample

Weighted Sample

Weighted Sample

Training Sample

Weighted Sample

Weighted Sample

Weighted SampleWeighted Sample

Training Sample

Weighted Sample

Training Sample

Weighted Sample

Weighted SampleWeighted Sample

Weighted Sample

Weighted Sample

Weighted Sample

Training Sample

Weighted Sample

CM (x)

C3(x)

C2(x)

C1(x)

Boosting

• Average many trees, each
grown to re-weighted versions
of the training data.

• Final Classifier is weighted av-
erage of classifiers:

C(x) = sign
[∑M

m=1 αmCm(x)
]

Boosting Trevor Hastie, Stanford University 24

Number of Terms

T
es

t E
rr

or

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4 Bagging

AdaBoost

100 Node Trees

Boosting vs Bagging

• 2000 points from
Nested Spheres in R10

• Bayes error rate is 0%.

• Trees are grown best
first without pruning.

• Leftmost term is a sin-
gle tree.

Boosting Trevor Hastie, Stanford University 25

AdaBoost (Freund & Schapire, 1996)

1. Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N .

2. For m = 1 to M repeat steps (a)–(d):

(a) Fit a classifier Cm(x) to the training data using weights wi.

(b) Compute weighted error of newest tree

errm =
∑N

i=1 wiI(yi �= Cm(xi))∑N
i=1 wi

.

(c) Compute αm = log[(1 − errm)/errm].

(d) Update weights for i = 1, . . . , N :
wi ← wi · exp[αm · I(yi �= Cm(xi))]
and renormalize to wi to sum to 1.

3. Output C(x) = sign
[∑M

m=1 αmCm(x)
]
.

Boosting Trevor Hastie, Stanford University 26

Boosting Iterations

T
es

t E
rr

or

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Single Stump

400 Node Tree

Boosting Stumps

A stump is a two-node
tree, after a single split.
Boosting stumps works
remarkably well on the
nested-spheres problem.

Boosting Trevor Hastie, Stanford University 27

Number of Terms

T
ra

in
 a

nd
 T

es
t E

rr
or

0 100 200 300 400 500 600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 Training Error

• Nested spheres in 10-
Dimensions.

• Bayes error is 0%.

• Boosting drives the
training error to zero.

• Further iterations con-
tinue to improve test
error in many exam-
ples.

Boosting Trevor Hastie, Stanford University 28

Number of Terms

T
ra

in
 a

nd
 T

es
t E

rr
or

0 100 200 300 400 500 600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Bayes Error

Noisy Problems

• Nested Gaussians in
10-Dimensions.

• Bayes error is 25%.

• Boosting with stumps

• Here the test error
does increase, but quite
slowly.

Boosting Trevor Hastie, Stanford University 29

Stagewise Additive Modeling

Boosting builds an additive model

f(x) =
M∑

m=1

βmb(x; γm).

Here b(x, γm) is a tree, and γm parametrizes the splits.

We do things like that in statistics all the time!

• GAMs: f(x) =
∑

j fj(xj)

• Basis expansions: f(x) =
∑M

m=1 θmhm(x)

Traditionally the parameters fm, θm are fit jointly (i.e. least
squares, maximum likelihood).

With boosting, the parameters (βm, γm) are fit in a stagewise
fashion. This slows the process down, and overfits less quickly.

Boosting Trevor Hastie, Stanford University 30

Additive Trees

• Simple example: stagewise least-squares?

• Fix the past M − 1 functions, and update the Mth using a tree:

min
fM∈Tree(x)

E(Y −
M−1∑
m=1

fm(x) − fM (x))2

• If we define the current residuals to be

R = Y −
M−1∑
m=1

fm(x)

then at each stage we fit a tree to the residuals

min
fM∈Tree(x)

E(R − fM (x))2

Boosting Trevor Hastie, Stanford University 31

Stagewise Least Squares

Suppose we have available a basis family b(x; γ) parametrized by γ.

• After m − 1 steps, suppose we have the model
fm−1(x) =

∑m−1
j=1 βjb(x; γj).

• At the mth step we solve

min
β,γ

N∑
i=1

(yi − fm−1(xi) − βb(xi; γ))2

• Denoting the residuals at the mth stage by
rim = yi − fm−1(xi), the previous step amounts to

min
β,γ

(rim − βb(xi; γ))2,

• Thus the term βmb(x; γm) that best fits the current residuals is
added to the expansion at each step.

Boosting Trevor Hastie, Stanford University 32

Adaboost: Stagewise Modeling

• AdaBoost builds an additive logistic regression model

f(x) = log
Pr(Y = 1|x)

Pr(Y = −1|x)
=

M∑
m=1

αmGm(x)

by stagewise fitting using the loss function

L(y, f(x)) = exp(−y f(x)).

• Given the current fM−1(x), our solution for (βm, Gm) is

arg min
β,G

N∑
i=1

exp[−yi(fm−1(xi) + β G(x))]

where Gm(x) ∈ {−1, 1} is a tree classifier and βm is a
coefficient.

Boosting Trevor Hastie, Stanford University 33

• With w
(m)
i = exp(−yi fm−1(xi)), this can be re-expressed as

arg min
β,G

N∑
i=1

w
(m)
i exp(−β yi G(xi))

• We can show that this leads to the Adaboost algorithm; See

pp 305.

Boosting Trevor Hastie, Stanford University 34

-2 -1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Misclassification
Exponential
Binomial Deviance
Squared Error
Support Vector

L
o
ss

y · f

Why Exponential Loss?

• e−yF (x) is a monotone,
smooth upper bound on
misclassification loss at x.

• Leads to simple reweighting
scheme.

• Has logit transform as popu-
lation minimizer

f∗(x) =
1
2

log
Pr(Y = 1|x)

Pr(Y = −1|x)

• Other more robust loss func-
tions, like binomial deviance.

Boosting Trevor Hastie, Stanford University 35

General Stagewise Algorithm

We can do the same for more general loss functions, not only least
squares.

1. Initialize f0(x) = 0.

2. For m = 1 to M :

(a) Compute
(βm, γm) = arg minβ,γ

∑N
i=1 L(yi, fm−1(xi) + βb(xi; γ)).

(b) Set fm(x) = fm−1(x) + βmb(x; γm).

Sometimes we replace step (b) in item 2 by

(b∗) Set fm(x) = fm−1(x) + νβmb(x; γm)

Here ν is a shrinkage factor, and often ν < 0.1. Shrinkage slows the
stagewise model-building even more, and typically leads to better
performance.

Boosting Trevor Hastie, Stanford University 36

Gradient Boosting

• General boosting algorithm that works with a variety of
different loss functions. Models include regression, resistant
regression, K-class classification and risk modeling.

• Gradient Boosting builds additive tree models, for example, for
representing the logits in logistic regression.

• Tree size is a parameter that determines the order of
interaction (next slide).

• Gradient Boosting inherits all the good features of trees
(variable selection, missing data, mixed predictors), and
improves on the weak features, such as prediction performance.

• Gradient Boosting is described in detail in , section 10.10.

Boosting Trevor Hastie, Stanford University 37

Number of Terms

T
es

t E
rr

or

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4 Stumps

10 Node
100 Node
Adaboost

Tree Size

The tree size J determines
the interaction order of the
model:

η(X) =
∑

j

ηj(Xj)

+
∑
jk

ηjk(Xj , Xk)

+
∑
jkl

ηjkl(Xj , Xk, Xl)

+ · · ·

Boosting Trevor Hastie, Stanford University 38

Stumps win!

Since the true decision boundary is the surface of a sphere, the
function that describes it has the form

f(X) = X2
1 + X2

2 + . . . + X2
p − c = 0.

Boosted stumps via Gradient Boosting returns reasonable
approximations to these quadratic functions.

Coordinate Functions for Additive Logistic Trees

f1(x1) f2(x2) f3(x3) f4(x4) f5(x5)

f6(x6) f7(x7) f8(x8) f9(x9) f10(x10)

Boosting Trevor Hastie, Stanford University 39

Spam Example Results

With 3000 training and 1500 test observations, Gradient Boosting
fits an additive logistic model

f(x) = log
Pr(spam|x)
Pr(email|x)

using trees with J = 6 terminal-node trees.

Gradient Boosting achieves a test error of 4%, compared to 5.3% for
an additive GAM, 5.0% for Random Forests, and 8.7% for CART.

Boosting Trevor Hastie, Stanford University 40

Spam: Variable Importance

!
$

hp
remove

free
CAPAVE

your
CAPMAX

george
CAPTOT

edu
you
our

money
will

1999
business

re
(

receive
internet

000
email

meeting
;

650
over
mail
pm

people
technology

hpl
all

order
address

make
font

project
data

original
report

conference
lab

[
credit
parts

#
85

table
cs

direct
415
857

telnet
labs

addresses
3d

0 20 40 60 80 100

Relative importance

Boosting Trevor Hastie, Stanford University 41

Spam: Partial Dependence

!

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

remove

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

edu

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.6

-0
.2

0.
0

0.
2

hp

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.6

-0
.2

0.
0

0.
2

Boosting Trevor Hastie, Stanford University 42

Comparison of Learning Methods

Some characteristics of different learning methods.

Key: ● = good, ● =fair, and ● =poor.

Characteristic Neural
Nets

SVM CART GAM KNN,
Kernel

Gradient
Boost

Natural handling of data
of “mixed” type ● ● ● ● ● ●

Handling of missing val-
ues ● ● ● ● ● ●

Robustness to outliers in
input space ● ● ● ● ● ●

Insensitive to monotone
transformations of in-
puts

● ● ● ● ● ●

Computational scalabil-
ity (large N) ● ● ● ● ● ●

Ability to deal with irrel-
evant inputs ● ● ● ● ● ●

Ability to extract linear
combinations of features ● ● ● ● ● ●

Interpretability
● ● ● ● ● ●

Predictive power
● ● ● ● ● ●

Boosting Trevor Hastie, Stanford University 43

Software

• R: free GPL statistical computing environment available from
CRAN, implements the S language. Includes:

– randomForest: implementation of Leo Breimans algorithms.

– rpart: Terry Therneau’s implementation of classification
and regression trees.

– gbm: Greg Ridgeway’s implementation of Friedman’s
gradient boosting algorithm.

• Salford Systems: Commercial implementation of trees, random
forests and gradient boosting.

• Splus (Insightful): Commerical version of S.

• Weka: GPL software from University of Waikato, New Zealand.
Includes Trees, Random Forests and many other procedures.

Ensembles

Léon Bottou

COS 424 – 4/8/2010

Readings

• T. G. Dietterich (2000)

“Ensemble Methods in Machine Learning”.

• R. E. Schapire (2003):

“The Boosting Approach to Machine Learning”.

Sections 1,2,3,4,6.

Léon Bottou 2/33 COS 424 – 4/8/2010

Summary

1. Why ensembles?

2. Combining outputs.

3. Constructing ensembles.

4. Boosting.

Léon Bottou 3/33 COS 424 – 4/8/2010

I. Ensembles

Léon Bottou 4/33 COS 424 – 4/8/2010

Ensemble of classifiers

Ensemble of classifiers

– Consider a set of classifiers h1, h2, . . . , hL.

– Construct a classifier by combining their individual decisions.

– For example by voting their outputs.

Accuracy

– The ensemble works if the classifiers have low error rates.

Diversity

– No gain if all classifiers make the same mistakes.

– What if classifiers make different mistakes?

Léon Bottou 5/33 COS 424 – 4/8/2010

Uncorrelated classifiers

Assume ∀r 6= s Cov [1I{hr(x) = y} , 1I{hs(x) = y}] = 0

The tally of classifier votes follows a binomial distribution.

Example
Twenty-one uncorrelated classifiers with 30% error rate.

Léon Bottou 6/33 COS 424 – 4/8/2010

Statistical motivation

blue : classifiers that work well on the training set(s)
f : best classifier.

Léon Bottou 7/33 COS 424 – 4/8/2010

Computational motivation

blue : classifier search may reach local optima
f : best classifier.

Léon Bottou 8/33 COS 424 – 4/8/2010

Representational motivation

blue : classifier space may not contain best classifier
f : best classifier.

Léon Bottou 9/33 COS 424 – 4/8/2010

Practical success

Recommendation system

– Netflix “movies you may like”.

– Customers sometimes rate movies they rent.

– Input: (movie, customer)

– Output: rating

Netflix competition

– 1M$ for the first team to do 10% better than their system.

Winner: BellKor team and friends

– Ensemble of more than 800 rating systems.

Runner-up: everybody else

– Ensemble of all the rating systems built by the other teams.

Léon Bottou 10/33 COS 424 – 4/8/2010

Bayesian ensembles

Let D represent the training data.

Enumerating all the classifiers

P (y|x,D) =
∑
h

P (y, h|x,D)

=
∑
h

P (h|x,D) P (y|h, x,D)

=
∑
h

P (h|D) P (y|x, h)

P (h|D) : how well does h match the training data.

P (y|x, h) : what h predicts for pattern x.

Note that this is a weighted average.

Léon Bottou 11/33 COS 424 – 4/8/2010

II. Combining Outputs

Léon Bottou 12/33 COS 424 – 4/8/2010

Simple averaging

��

��

��

���

� �

Léon Bottou 13/33 COS 424 – 4/8/2010

Weighted averaging a priori

��

��

��

���

� �

�	
����
����	����
����	��
��
����������
��	��

Weights derived from the training errors, e.g. exp(−β TrainingError(ht)).
Approximate Bayesian ensemble.

Léon Bottou 14/33 COS 424 – 4/8/2010

Weighted averaging with trained weights

��

��

��

���

� �

�	
����
���������
��	��

��
���������	���
�

Train weights on the validation set.
Training weights on the training set overfits easily.
You need another validation set to estimate the performance!

Léon Bottou 15/33 COS 424 – 4/8/2010

Stacked classifiers

��

��

��

���

�

���	
�
��������	

�	����
��
���

��������
���

Second tier classifier trained on the validation set.

You need another validation set to estimate the performance!

Léon Bottou 16/33 COS 424 – 4/8/2010

III. Constructing Ensembles

Léon Bottou 17/33 COS 424 – 4/8/2010

Diversification

Cause of the mistake Diversification strategy

Pattern was difficult. hopeless

Overfitting (?) vary the training sets

Some features were noisy vary the set of input features

Multiclass decisions were inconsistent vary the class encoding

Léon Bottou 18/33 COS 424 – 4/8/2010

Manipulating the training examples

Bootstrap replication simulates training set selection

– Given a training set of size n, construct a new training set

by sampling n examples with replacement.

– About 30% of the examples are excluded.

Bagging

– Create bootstrap replicates of the training set.

– Build a decision tree for each replicate.

– Estimate tree performance using out-of-bootstrap data.

– Average the outputs of all decision trees.

Boosting

– See part IV.

Léon Bottou 19/33 COS 424 – 4/8/2010

Manipulating the features

Random forests

– Construct decision trees on bootstrap replicas.

Restrict the node decisions to a small subset of features

picked randomly for each node.

– Do not prune the trees.

Estimate tree performance using out-of-bootstrap data.

Average the outputs of all decision trees.

Multiband speech recognition

– Filter speech to eliminate a random subset of the frequencies.

– Train speech recognizer on filtered data.

– Repeat and combine with a second tier classifier.

– Resulting recognizer is more robust to noise.

Léon Bottou 20/33 COS 424 – 4/8/2010

Manipulating the output codes

Reducing multiclass problems to binary classification

– We have seen one versus all.

– We have seen all versus all.

Error correcting codes for multiclass problems

– Code the class numbers with an error correcting code.

– Construct a binary classifier for each bit of the code.

– Run the error correction algorithm on the binary classifier outputs.

Léon Bottou 21/33 COS 424 – 4/8/2010

IV. Boosting

Léon Bottou 22/33 COS 424 – 4/8/2010

Motivation

• Easy to come up with rough rules of thumb for classifying data

– email contains more than 50% capital letters.

– email contains expression “buy now”.

• Each alone isnt great, but better than random.

• Boosting converts rough rules of thumb into an accurate classier.

Boosting was invented by Prof. Schapire.

Léon Bottou 23/33 COS 424 – 4/8/2010

Adaboost

Given examples (x1, y1) . . . (xn, yn) with yi = ±1.

Let D1(i) = 1/n for i = 1 . . . n.

For t = 1 . . . T do

• Run weak learner using examples with weights Dt.

• Get weak classifier ht
• Compute error: εt =

∑
iDt(i) 1I(ht(xi) 6= yi)

• Compute magic coefficient αt =
1

2
log

(
1− εt
εt

)
• Update weights Dt+1(i) =

Dt(i) e
−αt yi ht(xi)

Zt

Output the final classifier fT (x) = sign

 T∑
t=1

αtht(x)

Léon Bottou 24/33 COS 424 – 4/8/2010

Toy example

Weak classifiers: vertical or horizontal half-planes.

Léon Bottou 25/33 COS 424 – 4/8/2010

Adaboost round 1

Léon Bottou 26/33 COS 424 – 4/8/2010

Adaboost round 2

Léon Bottou 27/33 COS 424 – 4/8/2010

Adaboost round 3

Léon Bottou 28/33 COS 424 – 4/8/2010

Adaboost final classifier

Léon Bottou 29/33 COS 424 – 4/8/2010

From weak learner to strong classifier (1)

Preliminary

DT+1(i) = D1(i)
e−α1 yi h1(xi)

Z1
· · · e

−αT yi hT (xi)

ZT
=

1

n

e−yi fT (xi)∏
tZt

Bounding the training error

1

n

∑
i

1I{fT (xi) 6= yi} ≤
1

n

∑
i

e−yi fT (xi) =
1

n

∑
i

DT+1(i)
∏
t

Zt =
∏
t

Zt

Idea: make Zt as small as possible.

Zt =

n∑
i=1

Dt(i)e
−αt yi ht(xi) = n (1− εt) e−αt + n εt e

αt

1. Pick ht to minimize εt.

2. Pick αt to minimize Zt.

Léon Bottou 30/33 COS 424 – 4/8/2010

From weak learner to strong classifier (2)

Pick αt to minimize Zt (the magic coefficient)

∂Zt
∂αt

= −(1− εt) e−αt + εt e
αt = 0 =⇒ αt =

1

2
log

1− εt
εt

Weak learner assumption: γt = 1
2 − εt is positive and small.

Zt = (1− ε)
√

ε

1− ε
+ ε

√
1− ε
ε

=
√

4ε(1− ε) =
√

1− 4γ2
t ≤ exp

(
− 2γ2

t

)

TrainingError(fT) ≤
T∏
t=1

Zt ≤ exp

−2

T∑
t=1

γ2
t

The training error decreases exponentially if inf γt > 0.

But that does not happen beyond a certain point. . .

Léon Bottou 31/33 COS 424 – 4/8/2010

Boosting and exponential loss

Proofs are instructive

We obtain the bound

TrainingError(fT) ≤ 1

n

∑
i

e−yiH(xi) =

T∏
t=1

Zt

– without saying how Dt relates to ht
– without using the value of αt

y y(x)^

Conclusion

– Round T chooses the hT and αT
that maximize the exponential loss reduction from fT−1 to fT .

Exercise

– Tweak Adaboost to minimize the log loss instead of the exp loss.

Léon Bottou 32/33 COS 424 – 4/8/2010

Boosting and margins

marginH(x, y) =
y H(x)∑
t |αt|

=

∑
t αt y ht(x)∑

t |αt|

Remember support vector machines?

Léon Bottou 33/33 COS 424 – 4/8/2010

Ensemble	 learning	
Lecture	 12	

David	 Sontag	
New	 York	 University	

Slides adapted from Luke Zettlemoyer, Vibhav Gogate,
Rob Schapire, and Tommi Jaakkola

Ensemble	 methods	
Machine learning competition with a $1 million prize

3

Bias/Variance	 Tradeoff	

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001	

4

Reduce	 Variance	 Without	 Increasing	
Bias	

•  Averaging	 reduces	 variance:	

Average models to reduce model variance

One problem:
only one training set

where do multiple models come from?

(when predictions
 are independent)

5

Bagging:	 Bootstrap	 AggregaGon	

•  Leo	 Breiman	 (1994)	
•  Take	 repeated	 bootstrap	 samples	 from	 training	 set	 D.	
•  Bootstrap	 sampling:	 Given	 set	 D	 containing	 N	 training	
examples,	 create	 D’	 by	 drawing	 N	 examples	 at	 random	
with	 replacement	 from	 D.	

•  Bagging:	
–  Create	 k	 bootstrap	 samples	 D1	 …	 Dk.	
–  Train	 disGnct	 classifier	 on	 each	 Di.	
–  Classify	 new	 instance	 by	 majority	 vote	 /	 average.	

6

Bagging	

•  Best	 case:	

In practice:
models are correlated, so reduction is smaller than 1/N

variance of models trained on fewer training cases
usually somewhat larger

7

8

decision tree learning algorithm; very similar to ID3

shades of blue/red indicate strength of vote for particular classification

10

Reduce	 Bias2	 and	 Decrease	 Variance?	

•  Bagging	 reduces	 variance	 by	 averaging	
•  Bagging	 has	 liZle	 effect	 on	 bias	
•  Can	 we	 average	 and	 reduce	 bias?	
•  Yes:	 	

•  BoosGng	

Theory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of Boosting

Rob Schapire

Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”
[Gorin et al.]

• goal: automatically categorize type of call requested by phone
customer (Collect, CallingCard, PersonToPerson, etc.)

• yes I’d like to place a collect call long distance

please (Collect)
• operator I need to make a call but I need to bill

it to my office (ThirdNumber)
• yes I’d like to place a call on my master card

please (CallingCard)
• I just called a number in sioux city and I musta

rang the wrong number because I got the wrong

party and I would like to have that taken off of

my bill (BillingCredit)

• observation:
• easy to find “rules of thumb” that are “often” correct

• e.g.: “IF ‘card’ occurs in utterance
THEN predict ‘CallingCard’ ”

• hard to find single highly accurate prediction rule

The Boosting ApproachThe Boosting ApproachThe Boosting ApproachThe Boosting ApproachThe Boosting Approach

• devise computer program for deriving rough rules of thumb

• apply procedure to subset of examples

• obtain rule of thumb

• apply to 2nd subset of examples

• obtain 2nd rule of thumb

• repeat T times

Key DetailsKey DetailsKey DetailsKey DetailsKey Details

• how to choose examples on each round?
• concentrate on “hardest” examples
(those most often misclassified by previous rules of
thumb)

• how to combine rules of thumb into single prediction rule?
• take (weighted) majority vote of rules of thumb

BoostingBoostingBoostingBoostingBoosting

• boosting = general method of converting rough rules of
thumb into highly accurate prediction rule

• technically:
• assume given “weak” learning algorithm that can
consistently find classifiers (“rules of thumb”) at least
slightly better than random, say, accuracy ≥ 55%
(in two-class setting) [“weak learning assumption”]

• given sufficient data, a boosting algorithm can provably
construct single classifier with very high accuracy, say,
99%

Preamble: Early HistoryPreamble: Early HistoryPreamble: Early HistoryPreamble: Early HistoryPreamble: Early History

Strong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak Learnability

• boosting’s roots are in “PAC” learning model [Valiant ’84]

• get random examples from unknown, arbitrary distribution

• strong PAC learning algorithm:

• for any distribution
with high probability
given polynomially many examples (and polynomial time)
can find classifier with arbitrarily small generalization
error

• weak PAC learning algorithm

• same, but generalization error only needs to be slightly
better than random guessing (12 − γ)

• [Kearns & Valiant ’88]:
• does weak learnability imply strong learnability?

If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...

• can use (fairly) wild guesses to produce highly accurate
predictions

• if can learn “part way” then can learn “all the way”

• should be able to improve any learning algorithm

• for any learning problem:
• either can always learn with nearly perfect accuracy
• or there exist cases where cannot learn even slightly
better than random guessing

First Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting Algorithms

• [Schapire ’89]:
• first provable boosting algorithm

• [Freund ’90]:
• “optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]:
• first experiments using boosting
• limited by practical drawbacks

• [Freund & Schapire ’95]:
• introduced “AdaBoost” algorithm
• strong practical advantages over previous boosting
algorithms

Application: Detecting FacesApplication: Detecting FacesApplication: Detecting FacesApplication: Detecting FacesApplication: Detecting Faces
[Viola & Jones]

• problem: find faces in photograph or movie

• weak classifiers: detect light/dark rectangles in image

• many clever tricks to make extremely fast and accurate

Basic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core Theory

• introduction to AdaBoost

• analysis of training error

• analysis of test error
and the margins theory

• experiments and applications

Basic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core Theory

• introduction to AdaBoost

• analysis of training error

• analysis of test error
and the margins theory

• experiments and applications

A Formal Description of BoostingA Formal Description of BoostingA Formal Description of BoostingA Formal Description of BoostingA Formal Description of Boosting

• given training set (x1, y1), . . . , (xm, ym)

• yi ∈ {−1,+1} correct label of instance xi ∈ X

• for t = 1, . . . ,T :
• construct distribution Dt on {1, . . . ,m}

• find weak classifier (“rule of thumb”)

ht : X → {−1,+1}

with error εt on Dt :

εt = Pri∼Dt [ht(xi) %= yi]

• output final/combined classifier Hfinal

AdaBoostAdaBoostAdaBoostAdaBoostAdaBoost
[with Freund]

• constructing Dt :

• D1(i) = 1/m
• given Dt and ht :

Dt+1(i) =
Dt(i)

Zt
×

{

e−αt if yi = ht(xi)
eαt if yi %= ht(xi)

=
Dt(i)

Zt
exp(−αt yi ht(xi))

where Zt = normalization factor

αt =
1

2
ln

(
1− εt
εt

)

> 0

• final classifier:

• Hfinal(x) = sign

(

∑

t

αtht(x)

)

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

Voted combination of classifiers
• The general problem here is to try to combine many simple

“weak” classifiers into a single “strong” classifier

• We consider voted combinations of simple binary ±1
component classifiers

hm(x) = α1 h(x; θ1) + . . . + αm h(x; θm)

where the (non-negative) votes αi can be used to emphasize
component classifiers that are more reliable than others

Tommi Jaakkola, MIT CSAIL 3

Components: decision stumps
• Consider the following simple family of component classifiers

generating ±1 labels:

h(x; θ) = sign(w1 xk − w0)

where θ = {k, w1, w0}. These are called decision stumps.

• Each decision stump pays attention to only a single
component of the input vector

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

Tommi Jaakkola, MIT CSAIL 4

Voted combination cont’d
• We need to define a loss function for the combination so

we can determine which new component h(x; θ) to add and
how many votes it should receive

hm(x) = α1h(x; θ1) + . . . + αmh(x; θm)

• While there are many options for the loss function we consider
here only a simple exponential loss

exp{−y hm(x) }

Tommi Jaakkola, MIT CSAIL 5

Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

Tommi Jaakkola, MIT CSAIL 6

Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n�

i=1

exp{−yihm−1(xi)}� �� �
fixed at stage m

exp{−yiαmh(xi; θm) }

Tommi Jaakkola, MIT CSAIL 7

Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n�

i=1

exp{−yihm−1(xi)}� �� �
fixed at stage m

exp{−yiαmh(xi; θm) }

=
n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) }

So at the mth iteration the new component (and the votes)
should optimize a weighted loss (weighted towards mistakes).

Tommi Jaakkola, MIT CSAIL 8

Empirical exponential loss cont’d
• To increase modularity we’d like to further decouple the

optimization of h(x; θm) from the associated votes αm

• To this end we select h(x; θm) that optimizes the rate at
which the loss would decrease as a function of αm

∂

∂αm
��αm=0

n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) } =

�
n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) } ·

�
− yih(xi; θm)

�
�

αm=0

=

�
n�

i=1

W (m−1)
i

�
− yih(xi; θm)

�
�

Tommi Jaakkola, MIT CSAIL 11

Empirical exponential loss cont’d
• We find h(x; θ̂m) that minimizes

−
n�

i=1

W (m−1)
i yih(xi; θm)

We can also normalize the weights:

−
n�

i=1

W (m−1)
i�n

j=1 W (m−1)
j

yih(xi; θm)

= −
n�

i=1

W̃ (m−1)
i yih(xi; θm)

so that
�n

i=1 W̃ (m−1)
i = 1.

Tommi Jaakkola, MIT CSAIL 13

Selecting a new component: summary
• We find h(x; θ̂m) that minimizes

−
n�

i=1

W̃ (m−1)
i yih(xi; θm)

where
�n

i=1 W̃ (m−1)
i = 1.

• αm is subsequently chosen to minimize

n�

i=1

W̃ (m−1)
i exp{−yiαmh(xi; θ̂m) }

Tommi Jaakkola, MIT CSAIL 14

The AdaBoost algorithm
0) Set W̃ (0)

i = 1/n for i = 1, . . . , n

1) At the mth iteration we find (any) classifier h(x; θ̂m) for
which the weighted classification error �m

�m = 0.5− 1
2

�
n�

i=1

W̃ (m−1)
i yih(xi; θ̂m)

�

is better than chance.

2) The new component is assigned votes based on its error:

α̂m = 0.5 log((1− �m)/�m)

3) The weights are updated according to (Zm is chosen so that
the new weights W̃ (m)

i sum to one):

W̃ (m)
i =

1
Zm

· W̃ (m−1)
i · exp{−yiα̂mh(xi; θ̂m) }

Tommi Jaakkola, MIT CSAIL 18

