Introduction to Information Retrieval http://informationretrieval.org

IIR 21: Link Analysis

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2014-06-18

Overview

Outline

3 Citation analysis

4 PageRank

The web as a directed graph

- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink d₁ → d₂ indicates that d₁'s author deems d₂ high-quality and relevant.

• Assumption 2: The anchor text describes the content of d_2 .

- We use anchor text somewhat loosely here for: the text surrounding the hyperlink.
- Example: "You can find cheap cars here."
- Anchor text: "You can find cheap cars here"

[text of d_2] only vs. [text of d_2] + [anchor text $\rightarrow d_2$]

- Searching on [text of d_2] + [anchor text $\rightarrow d_2$] is often more effective than searching on [text of d_2] only.
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page!
 - ... if IBM home page is mostly graphics
- Searching on [anchor text $\rightarrow d_2$] is better for the query *IBM*.
 - In this representation, the page with the most occurrences of *IBM* is www.ibm.com.

Anchor text containing IBM pointing to www.ibm.com

Indexing anchor text

- Thus: Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than document text. (based on Assumptions 1&2)

Exercise: Assumptions underlying PageRank

- Assumption 1: A link on the web is a quality signal the author of the link thinks that the linked-to page is high-quality.
- Assumption 2: The anchor text describes the content of the linked-to page.
- Is assumption 1 true in general?
- Is assumption 2 true in general?

Google bombs

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in 2007 that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
 - Coordinated link creation by those who dislike the Church of Scientology
- Defused Google bombs: [dumb motherf....], [who is a failure?], [evil empire]

Outline

4 PageRank

Origins of PageRank: Citation analysis (1)

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.
 - Cocitation similarity on the web: Google's "related:" operator, e.g. [related:www.ford.com]

Origins of PageRank: Citation analysis (2)

- Another application: Citation frequency can be used to measure the impact of a scientific article.
 - Simplest measure: Each citation gets one vote.
 - On the web: citation frequency = inlink count
- However: A high inlink count does not necessarily mean high quality ...
- ... mainly because of link spam.
- Better measure: weighted citation frequency or citation rank
 - An citation's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.

Origins of PageRank: Citation analysis (3)

- Better measure: weighted citation frequency or citation rank
- This is basically PageRank.
- PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.
- Citation analysis is a big deal: The budget and salary of this lecturer are / will be determined by the impact of his publications!

Origins of PageRank: Summary

• We can use the same formal representation for

- citations in the scientific literature
- hyperlinks on the web
- Appropriately weighted citation frequency is an excellent measure of quality ...
 - ... both for web pages and for scientific publications.
- Next: PageRank algorithm for computing weighted citation frequency on the web

Outline

3 Citation analysis

Model behind PageRank: Random walk

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = long-term visit rate = steady state probability □

Formalization of random walk: Markov chains

- A Markov chain consists of N states, plus an N × N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.
- For 1 ≤ i, j ≤ N, the matrix entry P_{ij} tells us the probability of j being the next page, given we are currently on page i.

• Clearly, for all i,
$$\sum_{j=1}^{N} P_{ij} = 1$$

Example web graph

PageRank							
d_0		0.05					
d_1		0.04					
d_2		0.11					
d ₃		0.25					
d_4		0.21					
d_5		0.04					
d_6	0.31						
Page	Rank(d	2)<					
Page	Rank(d	16):					
why?							
	а	h					
d_0	0.10	0.03					
d_1	0.01	0.04					
d_2	0.12	0.33					
d ₃	0.47	0.18					
,	0.10	0.04					

23 / 80

Link matrix for example

	d_0	d_1	d_2	d ₃	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	1	0	0	0
d ₃	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d ₆	0	0	0	1	1	0	1

Transition probability matrix P for example

	d_0	d_1	d_2	d ₃	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d ₃	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Long-term visit rate

- Recall: PageRank = long-term visit rate
- Long-term visit rate of page *d* is the probability that a web surfer is at page *d* at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.
- First a special case: The web graph must not contain dead ends.

Dead ends

- The web is full of dead ends.
- Random walk can get stuck in dead ends.
- If there are dead ends, long-term visit rates are not well-defined (or non-sensical).

Teleporting – to get us out of dead ends

- At a dead end, jump to a random web page with prob. 1/N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.
- Note: "jumping" from dead end is independent of teleportation rate.

Result of teleporting

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends, a graph may not have well-defined long-term visit rates.
- More generally, we require that the Markov chain be ergodic.

Ergodic Markov chains

- A Markov chain is ergodic iff it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any page to any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.

• A non-ergodic Markov chain:

Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- ⇒ Web-graph+teleporting has a steady-state probability distribution.
- ⇒ Each page in the web-graph+teleporting has a PageRank.

- We now know what to do to make sure we have a well-defined PageRank for each page.
- Next: how to compute PageRank

Formalization of "visit": Probability vector

- A probability (row) vector $\vec{x} = (x_1, \dots, x_N)$ tells us where the random walk is at any point.
- Example: $\begin{pmatrix} 0 & 0 & 0 & \dots & 1 & \dots & 0 & 0 & 0 \\ 1 & 2 & 3 & \dots & i & \dots & N-2 & N-1 & N \end{pmatrix}$
- More generally: the random walk is on page *i* with probability *x_i*.
- Example:

Change in probability vector

- If the probability vector is \$\vec{x} = (x_1, \ldots, x_N)\$ at this step, what is it at the next step?
- Recall that row *i* of the transition probability matrix *P* tells us where we go next from state *i*.
- So from \vec{x} , our next state is distributed as $\vec{x}P$.

Steady state in vector notation

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector \vec{x} .)
- π_i is the long-term visit rate (or PageRank) of page *i*.
- So we can think of PageRank as a very long vector one entry per page.

Steady-state distribution: Example

• What is the PageRank / steady state in this example? $O_{i \ge 0} \qquad O_{i \ge 0$

Steady-state distribution: Example

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: π = (π₁, π₂, ..., π_N) is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi}P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...
- ... that is, $\vec{\pi}$ is the left eigenvector with the largest eigenvalue.
- All transition probability matrices have largest eigenvalue 1.

One way of computing the PageRank $\vec{\pi}$

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of P until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state $\vec{\pi}$.
- Thus: we will eventually (in asymptotia) reach the steady state.

Power method: Example

- The steady state distribution (= the PageRanks) in this example are 0.25 for d_1 and 0.75 for d_2 .

Computing PageRank: Power method

	<i>x</i> ₁	<i>x</i> ₂						
	$P_t(d_1)$	$P_t(d_2)$						
			$P_{11} = 0.1$	$P_{12} = 0.9$				
			$P_{21} = 0.3$	$P_{22} = 0.7$				
t_0	0	1	0.3	0.7	$= \vec{x}P$			
t_1	0.3	0.7	0.24	0.76	$= \vec{x}P^2$			
t_2	0.24	0.76	0.252	0.748	$= \vec{x}P^3$			
t ₃	0.252	0.748	0.2496	0.7504	$= \vec{x}P^4$			
t_∞	0.25	0.75	0.25	0.75	$= \vec{x} P^{\infty}$			
PageRank vector $= \vec{\pi} = (\pi_1, \pi_2) = (0.25, 0.75)$								
-								
$P_t(d_1$	$P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$							

 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

Power method: Example

- What is the PageRank / steady state in this example? $O(d_1) \longrightarrow O(d_2) \longrightarrow O(d_2)$ $O(d_2) \longrightarrow O(d_2) \longrightarrow O(d_2)$ $O(d_1) \longrightarrow O(d_2) \longrightarrow O(d_2) \longrightarrow O(d_2)$ $O(d_1) \longrightarrow O(d_2) \longrightarrow$
- The steady state distribution (= the PageRanks) in this example are 0.25 for d_1 and 0.75 for d_2 .

Exercise: Compute PageRank using power method

Solution

	$\begin{array}{c} x_1 \\ P_t(d_1) \end{array}$	$\sum_{t=1}^{x_2} P_t(d_2)$			
			$P_{11} = 0.7$	$P_{12} = 0.3$	
			$P_{21} = 0.2$	$P_{22} = 0.8$	
t_0	0	1	0.2	0.8	PageRank
t_1	0.2	0.8	0.3	0.7	ragenanik
t_2	0.3	0.7	0.35	0.65	
t ₃	0.35	0.65	0.375	0.625	
t_∞	0.4	0.6	0.4	0.6	

vector
$$= \vec{\pi} = (\pi_1, \pi_2) = (0.4, 0.6)$$

 $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$

 $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$

PageRank summary

Preprocessing

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$
- $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

PageRank issues

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories and search!
 - $\bullet \rightarrow$ Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service]
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both *video* and *service*.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desirable
- In practice: rank according to weighted combination of raw text match, anchor text match, PageRank & other factors
- ullet ightarrow see lecture on Learning to Rank

Example web graph

PageRank							
<i>d</i> ₀ 0.05							
d_1		0.04					
d_2		0.11					
d_3		0.25					
d_4		0.21					
d_5		0.04					
d_6	d ₆ 0.31						
Page	Rank(c	12)<					
Page	Rank(c	l6):					
why?							
	а	h					
d_0	0.10	0.03					
d_1	0.01	0.04					
d_2	0.12	0.33					
d ₃	0.47	0.18					
i	0.10	0.04					

47 / 80

Transition (probability) matrix

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d ₃	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Transition matrix with teleporting

	d_0	d_1	d_2	d ₃	d_4	d_5	d_6
d_0	0.02	0.02	0.88	0.02	0.02	0.02	0.02
d_1	0.02	0.45	0.45	0.02	0.02	0.02	0.02
d_2	0.31	0.02	0.31	0.31	0.02	0.02	0.02
d ₃	0.02	0.02	0.02	0.45	0.45	0.02	0.02
d_4	0.02	0.02	0.02	0.02	0.02	0.02	0.88
d_5	0.02	0.02	0.02	0.02	0.02	0.45	0.45
d_6	0.02	0.02	0.02	0.31	0.31	0.02	0.31

Power method vectors $\vec{x}P^k$

	x	$\vec{x}P^1$	$\vec{x}P^2$	$\vec{x}P^3$	$\vec{x}P^4$	$\vec{x}P^5$	<i>x</i> ₽ ⁶	$\vec{x}P^7$	<i>x</i> ₽ ⁸	$\vec{x}P^9$	$\vec{x}P^{10}$	$\vec{x}P^{11}$	$\vec{x}P^{12}$	$\vec{x}P^{13}$
d_0	0.14	0.06	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05
d_1	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_2	0.14	0.25	0.18	0.17	0.15	0.14	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11
d ₃	0.14	0.16	0.23	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25
d_4	0.14	0.12	0.16	0.19	0.19	0.20	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
d_5	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_6	0.14	0.25	0.23	0.25	0.27	0.28	0.29	0.29	0.30	0.30	0.30	0.30	0.31	0.31

Example web graph

PageRank								
d_0	<i>d</i> ₀ 0.05							
d_1		0.04						
<i>d</i> ₂		0.11						
d ₃		0.25						
d_4		0.21						
d_5		0.04						
d_6	d ₆ 0.31							
Page	Rank(d	2)<						
Page	Rank(d	l6):						
why?								
	а	h						
d_0	0.10	0.03						
d_1	0.01	0.04						
d_2	0.12	0.33						
d ₃	0.47	0.18						
ĩ	0.10	0.04						

51/80

How important is PageRank?

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
 - Rumor has it that PageRank in its original form (as presented here) now has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.
 - Adressing link spam is difficult and crucial.