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The web as a directed graph

page d1 anchor text page d2
hyperlink

Assumption 1: A hyperlink is a quality signal.

The hyperlink d1 → d2 indicates that d1’s author deems d2
high-quality and relevant.

Assumption 2: The anchor text describes the content of d2.

We use anchor text somewhat loosely here for: the text
surrounding the hyperlink.
Example: “You can find cheap cars <a
href=http://...>here</a>.”
Anchor text: “You can find cheap cars here”
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[text of d2] only vs. [text of d2] + [anchor text → d2]

Searching on [text of d2] + [anchor text → d2] is often more
effective than searching on [text of d2] only.

Example: Query IBM

Matches IBM’s copyright page
Matches many spam pages
Matches IBM wikipedia article
May not match IBM home page!
. . . if IBM home page is mostly graphics

Searching on [anchor text → d2] is better for the query IBM.

In this representation, the page with the most occurrences of
IBM is www.ibm.com.

10 / 80



Anchor text containing IBM pointing to www.ibm.com

www.nytimes.com: “IBM acquires Webify”

www.slashdot.org: “New IBM optical chip”

www.stanford.edu: “IBM faculty award recipients”

wwww.ibm.com
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Indexing anchor text

Thus: Anchor text is often a better description of a page’s
content than the page itself.

Anchor text can be weighted more highly than document text.
(based on Assumptions 1&2)
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Exercise: Assumptions underlying PageRank

Assumption 1: A link on the web is a quality signal – the
author of the link thinks that the linked-to page is high-quality.

Assumption 2: The anchor text describes the content of the
linked-to page.

Is assumption 1 true in general?

Is assumption 2 true in general?
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Google bombs

A Google bomb is a search with “bad” results due to
maliciously manipulated anchor text.

Google introduced a new weighting function in 2007 that fixed
many Google bombs.

Still some remnants: [dangerous cult] on Google, Bing, Yahoo

Coordinated link creation by those who dislike the Church of
Scientology

Defused Google bombs: [dumb motherf....], [who is a
failure?], [evil empire]
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Origins of PageRank: Citation analysis (1)

Citation analysis: analysis of citations in the scientific
literature

Example citation: “Miller (2001) has shown that physical
activity alters the metabolism of estrogens.”

We can view “Miller (2001)” as a hyperlink linking two
scientific articles.

One application of these “hyperlinks” in the scientific
literature:

Measure the similarity of two articles by the overlap of other
articles citing them.
This is called cocitation similarity.
Cocitation similarity on the web: Google’s “related:” operator,
e.g. [related:www.ford.com]
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Origins of PageRank: Citation analysis (2)

Another application: Citation frequency can be used to
measure the impact of a scientific article.

Simplest measure: Each citation gets one vote.
On the web: citation frequency = inlink count

However: A high inlink count does not necessarily mean high
quality . . .

. . . mainly because of link spam.

Better measure: weighted citation frequency or citation rank

An citation’s vote is weighted according to its citation impact.
Circular? No: can be formalized in a well-defined way.
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Origins of PageRank: Citation analysis (3)

Better measure: weighted citation frequency or citation rank

This is basically PageRank.

PageRank was invented in the context of citation analysis by
Pinsker and Narin in the 1960s.

Citation analysis is a big deal: The budget and salary of this
lecturer are / will be determined by the impact of his
publications!
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Origins of PageRank: Summary

We can use the same formal representation for

citations in the scientific literature
hyperlinks on the web

Appropriately weighted citation frequency is an excellent
measure of quality . . .

. . . both for web pages and for scientific publications.

Next: PageRank algorithm for computing weighted citation
frequency on the web
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Model behind PageRank: Random walk

Imagine a web surfer doing a random walk on the web

Start at a random page
At each step, go out of the current page along one of the links
on that page, equiprobably

In the steady state, each page has a long-term visit rate.

This long-term visit rate is the page’s PageRank.

PageRank = long-term visit rate = steady state probability
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Formalization of random walk: Markov chains

A Markov chain consists of N states, plus an N ×N transition
probability matrix P .

state = page

At each step, we are on exactly one of the pages.

For 1 ≤ i , j ≤ N, the matrix entry Pij tells us the probability
of j being the next page, given we are currently on page i .

Clearly, for all i,
∑N

j=1 Pij = 1

di dj
Pij
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank

d0 0.05
d1 0.04
d2 0.11
d3 0.25
d4 0.21
d5 0.04
d6 0.31

PageRank(d2)<
PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d 0.16 0.04
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Link matrix for example

d0 d1 d2 d3 d4 d5 d6
d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 1 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 1 1 0 1
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Transition probability matrix P for example

d0 d1 d2 d3 d4 d5 d6
d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Long-term visit rate

Recall: PageRank = long-term visit rate

Long-term visit rate of page d is the probability that a web
surfer is at page d at a given point in time.

Next: what properties must hold of the web graph for the
long-term visit rate to be well defined?

The web graph must correspond to an ergodic Markov chain.

First a special case: The web graph must not contain dead
ends.
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Dead ends

??

The web is full of dead ends.

Random walk can get stuck in dead ends.

If there are dead ends, long-term visit rates are not
well-defined (or non-sensical).
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Teleporting – to get us out of dead ends

At a dead end, jump to a random web page with prob. 1/N.

At a non-dead end, with probability 10%, jump to a random
web page (to each with a probability of 0.1/N).

With remaining probability (90%), go out on a random
hyperlink.

For example, if the page has 4 outgoing links: randomly
choose one with probability (1-0.10)/4=0.225

10% is a parameter, the teleportation rate.

Note: “jumping” from dead end is independent of
teleportation rate.
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Result of teleporting

With teleporting, we cannot get stuck in a dead end.

But even without dead ends, a graph may not have
well-defined long-term visit rates.

More generally, we require that the Markov chain be
ergodic.
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Ergodic Markov chains

A Markov chain is ergodic iff it is irreducible and aperiodic.

Irreducibility. Roughly: there is a path from any page to any
other page.

Aperiodicity. Roughly: The pages cannot be partitioned such
that the random walker visits the partitions sequentially.

A non-ergodic Markov chain:

1.0

1.0
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Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a unique
long-term visit rate for each state.

This is the steady-state probability distribution.

Over a long time period, we visit each state in proportion to
this rate.

It doesn’t matter where we start.

Teleporting makes the web graph ergodic.

⇒ Web-graph+teleporting has a steady-state probability
distribution.

⇒ Each page in the web-graph+teleporting has a
PageRank.
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Where we are

We now know what to do to make sure we have a well-defined
PageRank for each page.

Next: how to compute PageRank
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Formalization of “visit”: Probability vector

A probability (row) vector ~x = (x1, . . . , xN) tells us where the
random walk is at any point.

Example:
( 0 0 0 . . . 1 . . . 0 0 0 )

1 2 3 . . . i . . . N-2 N-1 N

More generally: the random walk is on page i with probability
xi .

Example:
( 0.05 0.01 0.0 . . . 0.2 . . . 0.01 0.05 0.03 )

1 2 3 . . . i . . . N-2 N-1 N
∑

xi = 1
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Change in probability vector

If the probability vector is ~x = (x1, . . . , xN) at this step, what
is it at the next step?

Recall that row i of the transition probability matrix P tells us
where we go next from state i .

So from ~x , our next state is distributed as ~xP .
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Steady state in vector notation

The steady state in vector notation is simply a vector
~π = (π1, π2, . . . , πN) of probabilities.

(We use ~π to distinguish it from the notation for the
probability vector ~x .)

πi is the long-term visit rate (or PageRank) of page i .

So we can think of PageRank as a very long vector – one
entry per page.
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Steady-state distribution: Example

What is the PageRank / steady state in this example?

d1 d2

0.75

0.25

0.25

0.
75
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Steady-state distribution: Example

x1 x2
Pt(d1) Pt(d2)

P11 = 0.25 P12 = 0.75
P21 = 0.25 P22 = 0.75

t0 0.25 0.75 0.25 0.75
t1 0.25 0.75 (convergence)

PageRank

vector = ~π = (π1, π2) = (0.25, 0.75)
Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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How do we compute the steady state vector?

In other words: how do we compute PageRank?

Recall: ~π = (π1, π2, . . . , πN) is the PageRank vector, the
vector of steady-state probabilities . . .

. . . and if the distribution in this step is ~x , then the
distribution in the next step is ~xP .

But ~π is the steady state!

So: ~π = ~πP

Solving this matrix equation gives us ~π.

~π is the principal left eigenvector for P . . .

. . . that is, ~π is the left eigenvector with the largest eigenvalue.

All transition probability matrices have largest eigenvalue 1.
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One way of computing the PageRank ~π

Start with any distribution ~x , e.g., uniform distribution

After one step, we’re at ~xP .

After two steps, we’re at ~xP2.

After k steps, we’re at ~xPk .

Algorithm: multiply ~x by increasing powers of P until
convergence.

This is called the power method.

Recall: regardless of where we start, we eventually reach the
steady state ~π.

Thus: we will eventually (in asymptotia) reach the steady
state.
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Power method: Example

What is the PageRank / steady state in this example?

d1 d2

0.9

0.3

0.1

0.
7

The steady state distribution (= the PageRanks) in this
example are 0.25 for d1 and 0.75 for d2.
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Computing PageRank: Power method

x1 x2
Pt(d1) Pt(d2)

P11 = 0.1 P12 = 0.9
P21 = 0.3 P22 = 0.7

t0 0 1 0.3 0.7 = ~xP
t1 0.3 0.7 0.24 0.76 = ~xP2

t2 0.24 0.76 0.252 0.748 = ~xP3

t3 0.252 0.748 0.2496 0.7504 = ~xP4

. . . . . .
t∞ 0.25 0.75 0.25 0.75 = ~xP∞

PageRank vector = ~π = (π1, π2) = (0.25, 0.75)

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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Power method: Example

What is the PageRank / steady state in this example?

d1 d2

0.9

0.3

0.1

0.
7

The steady state distribution (= the PageRanks) in this
example are 0.25 for d1 and 0.75 for d2.
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Exercise: Compute PageRank using power method

d1 d2

0.3

0.2

0.7

0.
8
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Solution

x1 x2
Pt(d1) Pt(d2)

P11 = 0.7 P12 = 0.3
P21 = 0.2 P22 = 0.8

t0 0 1 0.2 0.8
t1 0.2 0.8 0.3 0.7
t2 0.3 0.7 0.35 0.65
t3 0.35 0.65 0.375 0.625

. . .
t∞ 0.4 0.6 0.4 0.6

PageRank

vector = ~π = (π1, π2) = (0.4, 0.6)
Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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PageRank summary

Preprocessing

Given graph of links, build matrix P
Apply teleportation
From modified matrix, compute ~π
~πi is the PageRank of page i .

Query processing

Retrieve pages satisfying the query
Rank them by their PageRank
Return reranked list to the user
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PageRank issues

Real surfers are not random surfers.

Examples of nonrandom surfing: back button, short vs. long
paths, bookmarks, directories – and search!
→ Markov model is not a good model of surfing.
But it’s good enough as a model for our purposes.

Simple PageRank ranking (as described on previous slide)
produces bad results for many pages.

Consider the query [video service]
The Yahoo home page (i) has a very high PageRank and (ii)
contains both video and service.
If we rank all Boolean hits according to PageRank, then the
Yahoo home page would be top-ranked.
Clearly not desirable

In practice: rank according to weighted combination of raw
text match, anchor text match, PageRank & other factors

→ see lecture on Learning to Rank
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank

d0 0.05
d1 0.04
d2 0.11
d3 0.25
d4 0.21
d5 0.04
d6 0.31

PageRank(d2)<
PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d 0.16 0.04
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Transition (probability) matrix

d0 d1 d2 d3 d4 d5 d6
d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Transition matrix with teleporting

d0 d1 d2 d3 d4 d5 d6
d0 0.02 0.02 0.88 0.02 0.02 0.02 0.02
d1 0.02 0.45 0.45 0.02 0.02 0.02 0.02
d2 0.31 0.02 0.31 0.31 0.02 0.02 0.02
d3 0.02 0.02 0.02 0.45 0.45 0.02 0.02
d4 0.02 0.02 0.02 0.02 0.02 0.02 0.88
d5 0.02 0.02 0.02 0.02 0.02 0.45 0.45
d6 0.02 0.02 0.02 0.31 0.31 0.02 0.31
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Power method vectors ~xPk

~x ~xP1 ~xP2 ~xP3 ~xP4 ~xP5 ~xP6 ~xP7 ~xP8 ~xP9 ~xP10 ~xP11 ~xP12 ~xP13

d0 0.14 0.06 0.09 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
d1 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d2 0.14 0.25 0.18 0.17 0.15 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11
d3 0.14 0.16 0.23 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25
d4 0.14 0.12 0.16 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
d5 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d6 0.14 0.25 0.23 0.25 0.27 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank

d0 0.05
d1 0.04
d2 0.11
d3 0.25
d4 0.21
d5 0.04
d6 0.31

PageRank(d2)<
PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d 0.16 0.04
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How important is PageRank?

Frequent claim: PageRank is the most important component
of web ranking.

The reality:

There are several components that are at least as important:
e.g., anchor text, phrases, proximity, tiered indexes . . .
Rumor has it that PageRank in its original form (as presented
here) now has a negligible impact on ranking!
However, variants of a page’s PageRank are still an essential
part of ranking.
Adressing link spam is difficult and crucial.
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