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Overview

@ Recap

© Anchor text
© Citation analysis
@ PageRank

© HITS: Hubs & Authorities
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Outline

© Anchor text
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The web as a directed graph

hyperlink

page dp

page d>

@ Assumption 1: A hyperlink is a quality signal.

@ The hyperlink d; — d> indicates that d;’s author deems d5
high-quality and relevant.

@ Assumption 2: The anchor text describes the content of db.

o We use anchor text somewhat loosely here for: the text
surrounding the hyperlink.

o Example: “You can find cheap cars <a
href=http://...>here</a>."

o Anchor text: “You can find cheap cars here”



[text of dy] only vs. [text of dy] + [anchor text — db]

@ Searching on [text of dy] + [anchor text — db] is often more
effective than searching on [text of db] only.
o Example: Query IBM

o Matches IBM's copyright page

o Matches many spam pages

@ Matches IBM wikipedia article

¢ May not match IBM home page!

o ...if IBM home page is mostly graphics

@ Searching on [anchor text — dy] is better for the query IBM.

@ In this representation, the page with the most occurrences of
IBM is www.ibm.com. O
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Anchor text containing IBM pointing to www.ibm.com

www.nytimes.com: “IBM acquires Webify"
\

\
\
\
www.slashdot.or\g: “New IBM optical chip”
/
L ,
\ /
\ !
www.stanford\.edu:/’“IBM faculty award recipients”
/
vy
vy
\ 1/
N W

wwww.ibm.com
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Indexing anchor text

@ Thus: Anchor text is often a better description of a page's
content than the page itself.

@ Anchor text can be weighted more highly than document text.
(based on Assumptions 1&2) O
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Exercise: Assumptions underlying PageRank

@ Assumption 1: A link on the web is a quality signal — the
author of the link thinks that the linked-to page is high-quality.

@ Assumption 2: The anchor text describes the content of the
linked-to page.

@ |s assumption 1 true in general?

@ |s assumption 2 true in general? |
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Google bombs

o A Google bomb is a search with “bad” results due to
maliciously manipulated anchor text.

@ Google introduced a new weighting function in 2007 that fixed
many Google bombs.

@ Still some remnants: [dangerous cult] on Google, Bing, Yahoo

@ Coordinated link creation by those who dislike the Church of
Scientology

o Defused Google bombs: [dumb motherf....], [who is a

failure?], [evil empire] ]
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Outline

© Citation analysis
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Origins of PageRank: Citation analysis (1)

o Citation analysis: analysis of citations in the scientific
literature

o Example citation: “Miller (2001) has shown that physical
activity alters the metabolism of estrogens.”

@ We can view “Miller (2001)" as a hyperlink linking two
scientific articles.
@ One application of these “hyperlinks” in the scientific
literature:
@ Measure the similarity of two articles by the overlap of other
articles citing them.
o This is called cocitation similarity.
@ Cocitation similarity on the web: Google's “related:" operator,
e.g. [related:www.ford.com] O
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Origins of PageRank: Citation analysis (2)

@ Another application: Citation frequency can be used to
measure the impact of a scientific article.

@ Simplest measure: Each citation gets one vote.
@ On the web: citation frequency = inlink count
@ However: A high inlink count does not necessarily mean high
quality ...
@ ...mainly because of link spam.
o Better measure: weighted citation frequency or citation rank

o An citation's vote is weighted according to its citation impact.
o Circular? No: can be formalized in a well-defined way. O
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Origins of PageRank: Citation analysis (3)

o Better measure: weighted citation frequency or citation rank
@ This is basically PageRank.

@ PageRank was invented in the context of citation analysis by
Pinsker and Narin in the 1960s.

o Citation analysis is a big deal: The budget and salary of this
lecturer are / will be determined by the impact of his
publications! |
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Origins of PageRank: Summary

@ We can use the same formal representation for
o citations in the scientific literature
o hyperlinks on the web
@ Appropriately weighted citation frequency is an excellent
measure of quality ...
o ...both for web pages and for scientific publications.

@ Next: PageRank algorithm for computing weighted citation
frequency on the web
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Outline

Q@ PageRank
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Model behind PageRank: Random walk

© Imagine a web surfer doing a random walk on the web

o Start at a random page
@ At each step, go out of the current page along one of the links
on that page, equiprobably

@ In the steady state, each page has a long-term visit rate.
@ This long-term visit rate is the page's PageRank.

@ PageRank = long-term visit rate = steady state probability O
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Formalization of random walk: Markov chains

@ A Markov chain consists of N states, plus an N x N transition
probability matrix P.

©

state = page

©

At each step, we are on exactly one of the pages.

©

For 1 </,j < N, the matrix entry Pj; tells us the probability
of j being the next page, given we are currently on page /.

Clearly, for all i, X"V, P =1

J
P; I:

©
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Example web gra ph

PageRank
r be”Z & 0.05
d1 0.04
<-ford d2 0.11
honda |90P3Fd ds 0.25
ds 0.21
Jag“a' ds 0.04
tlg cheetah Pd6 R k(d(2))3<1
ageRan
aguar @ PageRank(d6):
why?
speed cat lion ‘ a h
do | 0.10 0.03
@ d; | 0.01 0.04
d» | 0.12 0.33

d; | 0.47 0.18

~ 4~
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Link matrix for example

ds
0

d di dry d3 di ds
0 1 0 0 O

do

a1

d>

d3

ds

ds

ds

80

24



Transition probability matrix P for example

do
0.00
0.00
0.33
0.00
0.00
0.00
0.00

d1
0.00
0.50
0.00
0.00
0.00
0.00
0.00

d>
1.00
0.50
0.33
0.00
0.00
0.00
0.00

d3
0.00
0.00
0.33
0.50
0.00
0.00
0.33

dy
0.00
0.00
0.00
0.50
0.00
0.00
0.33

ds
0.00
0.00
0.00
0.00
0.00
0.50
0.00

0.00
0.00
0.00
0.00
1.00
0.50
0.33
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Long-term visit rate

o Recall: PageRank = long-term visit rate

@ Long-term visit rate of page d is the probability that a web
surfer is at page d at a given point in time.

@ Next: what properties must hold of the web graph for the
long-term visit rate to be well defined?

@ The web graph must correspond to an ergodic Markov chain.

o First a special case: The web graph must not contain dead
ends. 0O
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Dead ends

——>7?

@ The web is full of dead ends.
@ Random walk can get stuck in dead ends.

o If there are dead ends, long-term visit rates are not
well-defined (or non-sensical).
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Teleporting — to get us out of dead ends

©

At a dead end, jump to a random web page with prob. 1/N.

©

At a non-dead end, with probability 10%, jump to a random
web page (to each with a probability of 0.1/N).

With remaining probability (90%), go out on a random
hyperlink.

©

o For example, if the page has 4 outgoing links: randomly
choose one with probability (1-0.10)/4=0.225

10% is a parameter, the teleportation rate.

(%]

(%]

Note: “jumping” from dead end is independent of
teleportation rate. |
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Result of teleporting

@ With teleporting, we cannot get stuck in a dead end.

@ But even without dead ends, a graph may not have
well-defined long-term visit rates.

@ More generally, we require that the Markov chain be
ergodic.
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Ergodic Markov chains

@ A Markov chain is ergodic iff it is irreducible and aperiodic.

@ lrreducibility. Roughly: there is a path from any page to any
other page.

@ Aperiodicity. Roughly: The pages cannot be partitioned such
that the random walker visits the partitions sequentially.

1.0
O——=0O
1.0

@ A non-ergodic Markov chain:
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Ergodic Markov chains

® Theorem: For any ergodic Markov chain, there is a unique
long-term visit rate for each state.

@ This is the steady-state probability distribution.

@ Over a long time period, we visit each state in proportion to
this rate.

o It doesn't matter where we start.
o Teleporting makes the web graph ergodic.

@ = Web-graph-+teleporting has a steady-state probability
distribution.

@ = Each page in the web-graph+-teleporting has a
PageRank. |
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Where we are

@ We now know what to do to make sure we have a well-defined
PageRank for each page.

o Next: how to compute PageRank
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Formalization of “visit”: Probability vector

o A probability (row) vector X = (x,...,xyn) tells us where the
random walk is at any point.
(0090 .. 1 ... 0 0 0)
°Bample © 5 3 i . N2 N1 N
@ More generally: the random walk is on page i with probability
X;.
o Example:
( 005 001 00 ... 02 ... 001 005 003 )
1 2 3 e ... N-2 N-1 N
oY xi=1 O
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Change in probability vector

o If the probability vector is X = (x1,...,xy) at this step, what
is it at the next step?

o Recall that row i of the transition probability matrix P tells us
where we go next from state /.

o So from X, our next state is distributed as XP. O
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Steady state in vector notation

@ The steady state in vector notation is simply a vector
7 = (w1, m2,...,7n) of probabilities.

o (We use 7 to distinguish it from the notation for the
probability vector X.)

@ 7; is the long-term visit rate (or PageRank) of page /.

@ So we can think of PageRank as a very long vector — one
entry per page.
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Steady-state distribution: Example

o What is the PageRank / steady state in this example?

0.75
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Steady-state distribution: Example

X1 X2
Pi(di)  Pi(do)

P11 =025 P =0.75
Po; =0.25 Py =0.75

to | 0.25 0.75
t; | 0.25 0.75

vector = 7 = (w1, ™) =

0.25 0.75
(convergence)

(0.25,0.75)

P(di) = Pe—1(d1) * P11 + Pe—1(d2) * P2y

Pi(d2) = Pr_1(d1) * P12 + Pr_1(d2) * P

PageRank

37
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How do we compute the steady state vector?

@ In other words: how do we compute PageRank?

@ Recall: @ = (71, m2,...,mn) is the PageRank vector, the
vector of steady-state probabilities . ..

@ ...and if the distribution in this step is X, then the
distribution in the next step is XP.

o But 7 is the steady state!

o So: T =7P

@ Solving this matrix equation gives us 7.

o 7 is the principal left eigenvector for P ...

@ ...thatis, 7 is the left eigenvector with the largest eigenvalue.

@ All transition probability matrices have largest eigenvalue 1. O

38/80



One way of computing the PageRank 7

©

Start with any distribution X, e.g., uniform distribution
After one step, we're at XP.

After two steps, we're at XP2.

After k steps, we're at XPk.

Algorithm: multiply X by increasing powers of P until
convergence.

This is called the power method.

@ Recall: regardless of where we start, we eventually reach the

steady state 7.

Thus: we will eventually (in asymptotia) reach the steady
state.



Power method: Example

o What is the PageRank / steady state in this example?
0.9
© —_— ~
Y T 7T

@ The steady state distribution (= the PageRanks) in this
example are 0.25 for d; and 0.75 for db. O
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Computing PageRank: Power method

X1 X2
P:(d1) P:(do)
P;1 =01 P, =09
P21 =0.3 P22 =0.7
to |0 1 0.3 0.7 = XP
t1 |03 0.7 0.24 0.76 = XP?
t, | 0.24 0.76 0.252 0.748 = XP3
t3 | 0.252 0.748 | 0.2496 0.7504 = xp*
t | 0.25 0.75 0.25 0.75 = XP>

PageRank vector = @ = (71, m2) = (0.25,0.75)

Pi(d1) = Pe—1(d1) * P11 + Pe—1(d2) * P

P(d2) = Pe—1(d1) * P12 + Pe—1(d2) * P2

41
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Power method: Example

o What is the PageRank / steady state in this example?
0.9
© —_— ~
Y T 7T

@ The steady state distribution (= the PageRanks) in this
example are 0.25 for d; and 0.75 for db. O
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Exercise: Compute PageRank using power method



Solution

X1 X2
Pi(di) Pi(db)
Pi1=07 Pip=03
Py =02 Py =0.8
to 0 1 0.2 0.8 PageRank
t1 0.2 0.8 0.3 0.7
tp 0.3 0.7 0.35 0.65
t3 | 0.35 0.65 0.375 0.625
tw | 0.4 0.6 0.4 0.6

vector = 7 = (w1, m2) = (0.4,0.6)
Pi(d1) = Pr—1(d1) * P11 + Pe—1(d2) * P

P(d2) = Pe—1(d1) * P12 + Pe_1(d2) * P2
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PageRank summary

@ Preprocessing
o Given graph of links, build matrix P
@ Apply teleportation
@ From modified matrix, compute 7
o 7 is the PageRank of page /.

@ Query processing
@ Retrieve pages satisfying the query
o Rank them by their PageRank
@ Return reranked list to the user



PageRank issues

o Real surfers are not random surfers.
o Examples of nonrandom surfing: back button, short vs. long
paths, bookmarks, directories — and search!
@ — Markov model is not a good model of surfing.
@ But it's good enough as a model for our purposes.
@ Simple PageRank ranking (as described on previous slide)
produces bad results for many pages.
o Consider the query [video service]
@ The Yahoo home page (i) has a very high PageRank and (ii)
contains both video and service.
o If we rank all Boolean hits according to PageRank, then the
Yahoo home page would be top-ranked.
o Clearly not desirable

@ In practice: rank according to weighted combination of raw
text match, anchor text match, PageRank & other factors

@ — see lecture on Learning to Rank
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Example web gra ph

PageRank
r be”Z & 0.05
d1 0.04
<-ford d2 0.11
honda |90P3Fd ds 0.25
ds 0.21
Jag“a' ds 0.04
tlg cheetah Pd6 R k(d(2))3<1
ageRan
aguar @ PageRank(d6):
why?
speed cat lion ‘ a h
do | 0.10 0.03
@ d; | 0.01 0.04
d» | 0.12 0.33

d; | 0.47 0.18

~ 4~
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Transition (probability) matrix

do
0.00
0.00
0.33
0.00
0.00
0.00
0.00

di
0.00
0.50
0.00
0.00
0.00
0.00
0.00

d>
1.00
0.50
0.33
0.00
0.00
0.00
0.00

d3
0.00
0.00
0.33
0.50
0.00
0.00
0.33

dy
0.00
0.00
0.00
0.50
0.00
0.00
0.33

ds
0.00
0.00
0.00
0.00
0.00
0.50
0.00

0.00
0.00
0.00
0.00
1.00
0.50
0.33
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Transition matrix with teleporting

do
0.02
0.02
0.31
0.02
0.02
0.02
0.02

di
0.02
0.45
0.02
0.02
0.02
0.02
0.02

d>
0.88
0.45
0.31
0.02
0.02
0.02
0.02

d3
0.02
0.02
0.31
0.45
0.02
0.02
0.31

dy
0.02
0.02
0.02
0.45
0.02
0.02
0.31

ds
0.02
0.02
0.02
0.02
0.02
0.45
0.02

0.02
0.02
0.02
0.02
0.88
0.45
0.31
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Power method vectors X Pk

% XPY XP? xP3 xP* XP°> xPS xPT XP® XP% XP© xpll zpl2 xp13
do | 0.14 0.06 0.09 0.07 0.07 0.06 0.06 006 0.06 005 0.05 005 0.05 0.05
dy [ 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 004 0.04 0.04 0.04
d» | 0.14 025 0.18 0.17 0.15 014 0.13 012 0.12 012 012 011 011 0.11
d3 [0.14 0.16 023 024 024 024 024 025 025 025 025 025 025 025
dy | 014 012 016 0.19 019 020 021 021 021 021 021 021 021 0.21
ds [ 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 004 0.04 0.04 0.04
ds | 0.14 0.25 023 025 0.27 028 029 029 030 030 030 030 031 031
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Example web gra ph

PageRank
r be”Z & 0.05
d1 0.04
<-ford d2 0.11
honda |90P3Fd ds 0.25
ds 0.21
Jag“a' ds 0.04
tlg cheetah Pd6 R k(d(2))3<1
ageRan
aguar @ PageRank(d6):
why?
speed cat lion ‘ a h
do | 0.10 0.03
@ d; | 0.01 0.04
d» | 0.12 0.33

d; | 0.47 0.18

~ 4~
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How important is PageRank?

@ Frequent claim: PageRank is the most important component
of web ranking.

@ The reality:
o There are several components that are at least as important:
e.g., anchor text, phrases, proximity, tiered indexes ...
@ Rumor has it that PageRank in its original form (as presented
here) now has a negligible impact on ranking!
@ However, variants of a page's PageRank are still an essential
part of ranking.

o Adressing link spam is difficult and crucial. O

52



