
CSE 5311: PROGRAMMING PROJECT TOPICS

Several programming projects are briefly described below. I am willing to consider
other programming proposals that you may have on your own, provided they have a
very strong relation to the contents of this course. If you wish, send me the proposal
modelled according to the descriptions below. There are totally 8 projects described
below. The first four involves simple implementation of concepts/ data structures de-
scribed in the class while the latter four asks you to solve some practical problem using
algorithms/data structures that you learned in the class.

Logistics: The project will be done in teams of 2-4 students. Exceptions will
be granted as appropriate. If you plan to use the same team as Anki project, that
is perfectly fine. In order to ensure some variety of projects, the project assignment
will be done as follows. Update the list of 3 (three) projects ordered based on your
preference in the Google document for Project signup sheet (where you entered your
Anki project preferences). If you have any trouble, send the list to instructor/GTA.
As an example, your preference might look like - P1, P4, P2 (where Pi means the title
in the document below of Project #i). This list means that your first preference is
project P1 followed by P4 and P2. Please finalize your project team by October 23,
2014 and inform the instructor/GTA. The final allocation will be announced on Oc-
tober 24. We will try to assign projects based on your preference as much as possible.

Final Project Demonstration: The project presentation will be scheduled dur-
ing the first week of December. During the presentation, you will demonstrate your
project to the instructor/GTA in which you show the various features of your system,
such as its correctness, efficiency, etc. You should be prepared to answer detailed
questions on the system design and implementation during this demo. We will also
examine your code to check for code quality, code documentation, etc. We might also
use some external data test files to verify the correctness of your algorithm. Plagiarism
will be treated very seriously. We will use some popular academic tools to check for
plagiarism that can look past simple variable name changes, moving code blocks etc
:). Additional details will be communicated as necessary.

Communication: We have created a separate folder in Piazza for the final project.
Post your queries/clarification there.

General Advice: While we would be thrilled to have some dazzling UI or flashy
animations, our primary aim is to make you understand the various design choices that
go into the algorithms and the necessary trade offs. The scalability of your algorithm
is very essential make sure you test your algorithm with (hundreds of) thousands of el-
ements. Your project will be evaluated based on correctness, efficiency, scalability and

1



most importantly, the experimental analysis. In both the project demonstration and
the project report, we are very interested in your analysis of the experimental results.
While we might give some initial parameters to evaluate, it is incumbent upon you to
thoroughly evaluate the algorithms and present them in the report/demonstration.

Deliverables: The following are the expected project deliverables that must be
sent to the instructor/GTA as “CSE5311-Project” in the subject.

1. A completed project report for the entire team which contains details about your
project, such as main data structures, main components of the algorithm, design
of the user-interface for input/output (if applicable), experimental results, e.g.
charts of running time versus input size, etc.

2. You should also turn in your code and associated documentation (e.g. README
files) so that everything can be backed up for future reference.

3. An individual report from each of the team members specifying (a) what are
their responsibilities in the project and (b) what is the break-up in terms of
effort by each student. Notice that this is an individual report.

During project demonstration, we might ask you to test the algorithm on some
external file provided by us. The input and output format will be specified clearly in
the project description.

2



Project Topics

1 Order Statistics and Sorting

In this project, you will evaluate various algorithms and strategies for the related
problems of order statistics and sorting. Your project must be able to perform the
following tasks:

1. Given an array and a number k, return the k-th smallest element

2. Given an array and a number k, return the top-k elements

3. Given an array, sort it in ascending order.

Order Statistics: You will implement and evaluate the following algorithms for
computing order statistics: (remember that k can be arbitrary and not necessarily the
median). Please refer Chapter 9 of CLRS for additional details.

1. Order statistics in worst case linear time (via median of median algorithm)

2. Order statistics in expected linear time

Sorting: You will implement and evaluate the following algorithms for sorting.

1. Elementary Sorting Algorithms: Bubble, Selection and Insertion sort.

2. Heap sort: You can use existing implementation of heap.

3. Quicksort and the following variants:

(a) Classical quick sort that always takes the first element as pivot

(b) Randomized quick sort that takes the pivot randomly

(c) Median of 3 heuristic: Instead of taking a single pivot randomly, this heuris-
tic picks 3 elements randomly. Then choose the median of these three ele-
ments as the pivot.

(d) Quicksort with insertion sort: This variant is based on the observation
that insertion sort is extremely fast for small arrays. So given a number l,
your algorithm should use quick sort until the sub-array is of size l or less
when insertion sort is used instead. Notice that this will give a runtime of
O(nl + n log n

l
). How should l be chosen in practice?

(e) Implementations of Quicksort in popular languages Java/C++/C#) etc use
a combination of the heuristics above. Compare your previous heuristics
with a real world implementation of quick sort (For eg, Java’s implementa-
tion can be found in the references - specifically look for the sort1 function).

Input/Output format: For simplicity, you can assume that all the elements are
float. For order statistics, the first line of your input file will contain k and n,the total
number of elements in the array separated by a space. Then the actual elements in
the array itself will be provided one per line. For sorting, the first line will provide
the array size followed by array content one per line. The output is a file with the

3



correct answer (k-th element, top-k elements, sorted array etc in a one element per
line format).

Evaluation: While this project might look “easy”, it also requires extensive anal-
ysis of the algorithm behavior. Your program should be able to handle array sizes in
the range of millions. Some “suggested” (but non exhaustive) evaluation include

1. Behavior of median of median algorithm for groups of 3,5 and 7.

2. Comparison of deterministic and probabilistic algorithm for order statistics.

3. Comparison of elementary sorting algorithms among themselves and with faster
algorithms (heap/quick sort)

4. Comparison of running time of heap sort and quick sort which is faster?

5. Comparison of various quick sort heuristics wrt to running time, stack (recursion)
depth etc

6. How does the distribution of input data (uniform, normal etc) affect the algo-
rithm?

References:
1. Java’s implementation of Quick sort (see sort1 function) http://grepcode.com/

file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/util/Arrays.

java .

2 Large Number and Matrix Multiplication

In this project, you will implement algorithms to multiply really large numbers and
matrices. Note that Gauss and Strassen’s algorithm will be covered at the end of the
class. If you plan to implement this project, do read the relevant chapters in textbook.

Large Number Multiplication: In this task, you will implement and evaluate
various algorithms for multiplying very large numbers. The algorithms are the tradi-
tional long multiplication (the one learned in grade school!), Gauss’s algorithm (the
one covered in class) and Karatsuba’s algorithm (see reference below). You can assume
that all numbers are provided in base 10 and are always integers (albeit with lot of
digits) and the number of digits is a power of 2.

Large Matrix Multiplication: In this task, you will implement algorithms for
large matrix multiplication. You can assume that the matrices are square, the el-
ements are integers and the dimensions are a power of 2. Evaluate the traditional
O(n3) algorithm and Strassen’s algorithm.

Input/Output format: The input file for large number multiplication will con-
tain two lines one for each number. For matrix multiplication, the matrix will be
specified in the “sparse” format. The first line will provide the dimension while the
subsequent lines will be of the format (row, column, value). For eg, an identity matrix

4

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/util/Arrays.java
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/util/Arrays.java
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/util/Arrays.java


of size 3 will be specified as 3 \n (1,1,1) \n (2,2,1) \n (3,3,1).

Evaluation: This project is “easy” wrt to implementation per se. However get-
ting the internal data structures right is a bit tricky! Your project should be able to
multiply two numbers with up to 10 thousand digits each and matrices of dimension
up to 2048. This means that you can no longer use any of the available data types.
Think carefully about how you represent large numbers as this will have a significant
impact on the running time. Evaluate the running time of the various algorithms.

References:

1. Gauss’ (also covered in class) and Karatsuba’s algorithm for multiplication -
http://en.wikipedia.org/wiki/Multiplication_algorithm#Fast_multiplication_

algorithms_for_large_inputs

2. Strassen’s algorithm : Chapter 4 of CLRS.

3 Shortest Path Algorithms

In this project, you will implement various algorithms for Shortest path over weighted
graphs. Specifically, you will implement two single source shortest path algorithms
(Dijkstra and Bellman-Ford) and two multi source shortest path (Floyd-Warshall and
Johnson). We will not be covering Johnson’s algorithm in the class - So refer the text-
book for details. Once you have implemented Dijkstra and Bellman-Ford algorithms,
implementing Johnson’s algorithm is actually quite easy. You could use external li-
brary implementations for the required data structures such as heaps.

Input/Output format: The input graph will be specified through adjacency
matrix. The matrix itself will be specified in the “sparse” format. The first line will
provide the number of nodes, the second line contains the number of edges while the
subsequent lines will be of the format (row, column, weight). For eg, an identity ma-
trix of size 3 will be specified as 3 \n (1,1,1) \n (2,2,1) \n (3,3,1). You can assume
that weights are integers that could be negative.

Evaluation: This is another “easy” project wrt implementation. However, in
order to get good credit, you would have to do extensive experiments. Your algorithm
must also run on very large graphs with thousands of nodes. Some “suggested” (but
non exhaustive) evaluation include

1. Comparison of performance of single source shortest path algorithms (Dijkstra
and Bellman-Ford)

2. Comparison of multiple source shortest path algorithms (Floyd-Warshall and
Johnson)

3. Compute all-pair shortest paths by running single source shortest path algo-
rithms (D and B-F) on all nodes. Compare the performance with directly invok-
ing all pair shortest path algorithms (F-W and J)

4. Compare the performance on dense and sparse graphs

5

http://en.wikipedia.org/wiki/Multiplication_algorithm#Fast_multiplication_algorithms_for_large_inputs
http://en.wikipedia.org/wiki/Multiplication_algorithm#Fast_multiplication_algorithms_for_large_inputs


References:

1. The algorithm descriptions can be found in Chapters 24 and 25 of CLRS

2. A sample input file can be found in http://algs4.cs.princeton.edu/44sp/

NYC.txt . Our test files will be larger.

4 Data Structures for Dynamic Set ADT

In this project, you will implement four popular data structures for representing dy-
namic set ADT. Specifically, you will implement BST, RBT, Min-Heap and Hash
Table. You cannot use any external libraries as part of your implementation. For
each data structure, you will implement the following operations: Insert, Delete,
Search and Minimum For Hash table, implement a simple modular hash function
h(k) = k mod m and use linear probing for collision resolution.

Input/Output format: The first line of the input file will contain the space
budget for hash table. For other data structures, this can be safely ignored. This will
be followed by a list of tuples of the format (opcode, value). Valid opcodes include I
(insert), D (delete), S (search), M (minimum) and P (print). You can also assume that
value will be an integer and all elements are distinct. When delete opcode is invoked
on the heap, you need to delete the root node (i.e. ignore the value). Ensure that your
code works on edge cases (e.g. deleting or searching for an element that is not in the
data structure). When the print opcode is issued, output the content of ADT through
pre-order traversal (for BST, RBT and Heap) - one element per line. For Hash table,
print the content of each bucket one line at a time. If the bucket is empty, output the
special string None.

Evaluation: This is another “easy” project wrt implementation. However, in
order to get good credit, you would have to do extensive experiments. Your algorithm
must be able to handle large sets. Some “suggested” (but non exhaustive) evaluation
include

1. Comparison of performance of various data structures for the 4 operations

2. Comparison of performance of BST and RBT for same set of inputs

3. Performance on worst case examples - sorted elements, elements that will cause
large collisions etc

5 Task Scheduler using Red-Black Trees

Red-black trees are very powerful data structures and find numerous applications.
For eg, TreeMap in Java/C++ STL is usually implemented using it. In this project,
you will implement another high profile application - a simplified version of Linux’s
scheduling algorithm - Completely Fair Scheduler(CFS).

Here is the intuition behind the scheduler. The primary objective is to ensure
that each task that is currently active has access to CPU as fairly as possible. So we
associate an unfairness score with each task. The scheduler maintains the list of active
tasks as a red-black tree and the nodes are ordered in descending order of unfairness
hence the task that was treated most unfairly is the left most node. The scheduler

6

http://algs4.cs.princeton.edu/44sp/NYC.txt
http://algs4.cs.princeton.edu/44sp/NYC.txt


runs a task till it is no longer the most unfairly treated. Please see the references for
additional details. Of course, you have to insert a node for a task when it arrives and
delete it once it is completed.

Input/Output format: Your input will be a single file of the following format.
The first line contains the total number of tasks and the number of time periods to
run the algorithm separated by a space. It is followed by a list of tasks. Each task
will be triple <task id, start time, number of seconds it takes to complete>. For eg
<20, 10, 100>means that task-20 arrives at 10th time unit of simulation and requires
100 seconds in the CPU to complete (not necessarily consecutively).

The output will contain two things:

1. Given some time unit (say time unit 100), the snapshot of the red-black tree in-
cluding the tasks, their color and their unfairness values. Do an in-order traversal
so that the tasks are ordered based on their unfairness.

2. The list of tasks that ran during the time period of the simulation. For eg,
suppose the simulation ran for 5 time units <1,2,3,2,2>means that task 1 was
run by the scheduler at the start. Then task-2 ran for 1 time-unit followed by
task-3 and then task-2 ran again for 2 consecutive time periods.

Evaluation:

1. Compare this implementation with that of a heap (you can use a priority queue
from existing library).

2. How fair is the scheduler actually?

3. Does this scheduler maximizes throughput?

References: The algorithm for this scheduler is quite simple once you get the red
black tree working. For further details see:

1. http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.

pdf

2. http://en.wikipedia.org/wiki/Completely_Fair_Scheduler and the refer-
ences therein

3. http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/

6 MST and TSP for Metric Graphs with MST Heuris-

tic

In this project you will implement two algorithms for MST and evaluate how the
choice of the internal data structure impacts the running time. Then you will use the
MST algorithm to provide an approximate solution to the famous Traveling Salesman
problem.

Minimum Spanning Trees: In this task, you will implement the following algo-
rithms:

7

http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/


1. Kruskal’s algorithm: You will implement Kruskal’s algorithm and evaluate
the following variants that differ in how they check if two vertices are in two
different trees.

(a) The naive method where you use DFS to check if two vertices are in same
or different trees.

(b) Union-find without path compression and union-by-rank heuristic (you can
use some existing implementation of Union-Find)

(c) Union-find with path compression and use union-by-rank heuristic (you can
use some existing implementation of Union-Find)

2. Prim’s algorithm - Learn about Prim’s algorithm from CLRS. You will imple-
ment the algorithm and evaluate the following variants that differ in how they
choose the next minimum weight edge.

(a) Storing edges as an unsorted array

(b) Storing edges as a sorted array

(c) Storing edges as a binary min-heap (you can use an external library for
heaps)

Traveling Salesman Problem: Traveling salesman problem is a very famous
and hard problem that we will briefly explore later in the course. For the purpose of
this project, you can get a primer from Chapters 34 and 35 of CLRS. We will look
at using approximation algorithms based on MST for a specific type of graph metric
graph (where the distances obey triangle inequality). Assume that the input graph is
guaranteed to be metric.

You can choose to implement either the 2-approximation algorithm (defined in
Chapter 35 of CLRS) or the 1.5-approximation algorithm (aka Christofides algorithm).
Compare it with the optimal answer. You can use some external library to find the
optimal solution to the TSP problem.

Input/Output format: The input graph is a complete graph where each node
is connected to each other node. It is specified as follows. The first line contains the
number of nodes. The subsequent lines contains the nodes as triple <node id, x,y>.
i.e. the input is a geometric graph where the nodes are points in the 2-d plane. The
distance between any two points is the euclidean distance between them. Notice that
this graph is also metric.

Evaluation: Here are some simple evaluations to start with.

1. How does the various data structures impact the performance of individual MST
algorithms

2. How does Prim’s and Kruskal’s algorithm compare in performance?

3. How good are the answers provided by the approximation algorithm with that
of optimal answers provided by external solver?

References:

8



1. TSP : Chapter 34 of CLRS

2. MST based Approximation algorithm for TSP: Chapter 35 of CLRS.

3. Christofides algorithm - http://en.wikipedia.org/wiki/Christofides_algorithm
or http://www.cs.cornell.edu/courses/cs681/2007fa/Handouts/christofides.
pdf .

7 Network Flow: Resource Allocation and Project

Scheduling

In this project showcases the power of network flow algorithms by allowing you to
solve three different yet related problems. Evaluate each of the problem for both
Ford-Fulkerson and Edmond-Karp algorithms.

7.1 Simple Resource Allocation via Maximum Bipartite Match-
ing

You are given a set of n tasks and m resources (or people). Each task can be completed
by a single person. For each task, the subset of workers qualified to perform it are
also provided to you. For each person, you are also provided with a maximum number
of projects he/she can work on. Your objective is to find an assignment of tasks to
people such that as many jobs are completed and no person is overloaded. Model this
as a maximum bipartite graph matching problem and solve it.

7.2 Resource Allocation with Constraints

Here is a slightly more complex version of the problem. The setting is similar to above.
For each person we are provided with a bound [a,b] which means that the person has
to work atleast ’a’ tasks and atmost ’b’ tasks. Similarly, each task is also provided
with a bound [c,d] which means it requires atleast ’c’ workers and atmost ’d’ workers.
We also know which persons are eligible to work on which projects. Your objective is
to find an assignment such that as many tasks are completed while not violating the
resource constraints.

7.3 Task Scheduling with Profit Constraints

Here is yet another variant. Let us forget about the people and focus only on the
tasks. We are provided with a bunch of tasks. Each task ti has a profit pi associated
with it. If pi > 0 then we make a profit while if pi < 0 we lose money. To make things
harder, we are also provided with some constraints within projects. Intuitively, model
the problem as a graph where each task is a node. An edge exists between tasks ti
and tj if tj is a prerequisite of ti. In other words, if we want to do ti , we must also do
tj. Your objective is to identify a subset of tasks such that your profit is maximized
and all the inter-dependencies are satisfied.

Input/Output Format: For the first two problems, the input is specified as two
files. One for workers and one for tasks. The first line of workers file stores the total

9

http://en.wikipedia.org/wiki/Christofides_algorithm
http://www.cs.cornell.edu/courses/cs681/2007fa/Handouts/christofides.pdf
http://www.cs.cornell.edu/courses/cs681/2007fa/Handouts/christofides.pdf


number of workers followed by a triple <workerid, min tasks, max tasks>. Of course
for problem 1, min task=max task. The first line of task file specifies the total number
of tasks followed by a tuple <task id, min requirement, max requirement, list of quali-
fied worker ids>. For the third project, the input is provided as follows. The first line
provides the total number of tasks. The subsequent line describe each task per line as
a tuple <task id, task profit, list of projects dependent on>. The last parameter can
be empty! The output consists of one line per task (ordered by task id) where you
specify the task id followed by the resource allocated. For the final problem, the list
of tasks chosen (ordered by id) suffices.

References: You might want to check this notes for some useful tips on mod-
eling the problems http://courses.engr.illinois.edu/cs473/sp2011/lectures/

19_add_notes.pdf .

8 DeDuplication and Music Identification using Hash-

ing Functions

In this project, you will use the magic of hashing functions to perform two non-trivial
applications. The first is near duplicate identification where the objective is to identify
items that are very similar to each other. The second is to identify music (or video if
you are ambitious) from a small music snippet.

Near Duplicate Identification: In the class, we briefly discussed about how lot
of services such as Dropbox use hashing function to identify duplicates so that each
file is uploaded only once. However, very few scenarios allow for such exact duplicates.
Typically, two files will be near duplicates. To take a web example, there might
two documents that have identical content but with different timestamps. Search
engines such as Google would like to store only one of them so that the storage cost
is minimized.

Please see references for additional details about how to implement the algorithm.
You can use any popular hashing function such as SHA-1, SHA-256, MD5 etc.

Music Identification: Many of you must be aware of the music identification tool
Shazam. It uses hashing functions to identify a song from a 10 second fingerprint. A
key difference from previous problem is that two songs can sound identical to human
ear even if their bits are very different. Hence, we have to use a hashing function that
“mimics” human ear. This is called as acoustic fingerprinting. Fortunately, there exist
a number of open source hashing functions for audios. In this project, you will design
an algorithm to identify the music. If you are ambitious, you could extend it to video
(ContentId of YouTube works in a similar fashion).

High Level Idea: While the two projects might be in two domains, the underlying
approach to solve them is quite similar. You will split your project into two parts. In
the first part, you will be given a set of input files (text or audio) and you will convert
the content into fingerprints (of Shingles and using appropriate hashing function) and
store them in some database (file based such as SQLite or MySQL/PostgreSQL). In
the second part, given an input (either a duplicate text file or short audio snippet),
you want to identify if it exists in the database and output relevant details. With
careful design, most of your code (almost 80% in my case) could be shared across the

10

http://courses.engr.illinois.edu/cs473/sp2011/lectures/19_add_notes.pdf
http://courses.engr.illinois.edu/cs473/sp2011/lectures/19_add_notes.pdf


two tasks (deduplication and music identification).
Input/Output format: The input to both projects will be two directories. The

first directory will contain a set of files that are distinct. In the second directory, there
will be additional files that will be used for evaluation. For task 1, the files could
potentially be (near) duplicates of some existing file in directory 1. For task 2, the
files will short audio files that are potential snippets of files from directory 1 (you can
use a tool like Audacity to create audio snippets). Read the files in second directory in
sorted order. For both tasks, each line of the output file will contain two information :
(filename, duplicatename). Filename is the name of the file in second directory while
duplicate name is the file in first directory that it is closest to. If there are multiple du-
plicates choose the closest one. If there are no duplicates, write as (filename, Distinct).

References:

• Near Duplicate Detection: http://nlp.stanford.edu/IR-book/pdf/19web.

pdf

• Music Identification: Do a Google search for query like “shazam fingerprint”.
Here is an old non technical introduction http://www.slate.com/articles/

technology/technology/2009/10/that_tune_named.html.

• My favorite database of acoustic fingerprints for testing is https://acoustid.

org/database . There are many others available in net.

• There are a number of open source acoustic fingerprinting services. You can use
any one of AcoustID (such as Chromaprint), EchoPrint, MusicBrainz etc.

11

http://nlp.stanford.edu/IR-book/pdf/19web.pdf
http://nlp.stanford.edu/IR-book/pdf/19web.pdf
http://www.slate.com/articles/technology/technology/2009/10/that_tune_named.html
http://www.slate.com/articles/technology/technology/2009/10/that_tune_named.html
https://acoustid.org/database
https://acoustid.org/database

	Order Statistics and Sorting
	Large Number and Matrix Multiplication
	Shortest Path Algorithms
	Data Structures for Dynamic Set ADT
	Task Scheduler using Red-Black Trees
	MST and TSP for Metric Graphs with MST Heuristic
	Network Flow: Resource Allocation and Project Scheduling
	Simple Resource Allocation via Maximum Bipartite Matching
	Resource Allocation with Constraints
	Task Scheduling with Profit Constraints

	DeDuplication and Music Identification using Hashing Functions

